K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2015

Đặt x^2 + x = t 

Thay vào ta có đa thức mới :

    t. ( t + 1 ) - 6 

= t^2 + t - 6 

= t^2 + 2t  - 3t - 6 

= t.(t+2 ) - 3 .(t+2)

= ( t - 3 )(t + 2 )

Thay t = x^2 + x ta có :

= ( x^2 + x - 3 )(x^2 + x + 2 ) 

24 tháng 9 2019

Cách 1: Tách một hạng tử thành tổng hai hạng tử để xuất hiện nhân tử chung.

a) x2 – 3x + 2

= x2 – x – 2x + 2 (Tách –3x = – x – 2x)

= (x2 – x) – (2x – 2)

= x(x – 1) – 2(x – 1) (Có x – 1 là nhân tử chung)

= (x – 1)(x – 2)

Hoặc: x2 – 3x + 2

= x2 – 3x – 4 + 6 (Tách 2 = – 4 + 6)

= x2 – 4 – 3x + 6

= (x2 – 22) – 3(x – 2)

= (x – 2)(x + 2) – 3.(x – 2) (Xuất hiện nhân tử chung x – 2)

= (x – 2)(x + 2 – 3) = (x – 2)(x – 1)

b) x2 + x – 6

= x2 + 3x – 2x – 6 (Tách x = 3x – 2x)

= x(x + 3) – 2(x + 3) (có x + 3 là nhân tử chung)

= (x + 3)(x – 2)

c) x2 + 5x + 6 (Tách 5x = 2x + 3x)

= x2 + 2x + 3x + 6

= x(x + 2) + 3(x + 2) (Có x + 2 là nhân tử chung)

= (x + 2)(x + 3)

Cách 2: Đưa về hằng đẳng thức (1) hoặc (2)

a) x2 – 3x + 2

Giải bài tập Vật lý lớp 10

(Vì có x2 và Giải bài tập Vật lý lớp 10 nên ta thêm bớt Giải bài tập Vật lý lớp 10 để xuất hiện HĐT)

Giải bài tập Vật lý lớp 10

= (x – 2)(x – 1)

b) x2 + x - 6

Giải bài tập Vật lý lớp 10

= (x – 2)(x + 3).

c) x2 + 5x + 6

Giải bài tập Vật lý lớp 10

= (x + 2)(x + 3).

21 tháng 8 2021

\(\left(x^2+x+1\right)\left(x^2+x+5\right)-21=x^4+x^3+5x^2+x^3+x^2+5x+x^2+x+5-21=x^4+2x^3+7x^2+6x-16=\left(x-1\right)\left(x+2\right)\left(x^2+x+8\right)\)

NV
21 tháng 8 2021

\(=\left(x^2+x+1\right)\left(x^2+x+1+4\right)-21\)

\(=\left(x^2+x+1\right)^2+4\left(x^2+x+1\right)-21\)

\(=\left(x^2+x+1\right)^2-3\left(x^2+x+1\right)+7\left(x^2+x+1\right)-21\)

\(=\left(x^2+x+1\right)\left(x^2+x-2\right)+7\left(x^2+x-2\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x+8\right)\)

\(=\left(x-1\right)\left(x-2\right)\left(x^2+x+8\right)\)

9 tháng 10 2017

x2 – x – 6

= x2 + 2x – 3x – 6

(Tách –x = 2x – 3x)

= x(x + 2) – 3(x + 2)

(có x + 2 là nhân tử chung)

= (x – 3)(x + 2)

2 tháng 3 2022

-Đặt \(t=\left(x^2-x+1\right)\)

\(\left(x^2-x+1\right)^2-5x\left(x^2-x+1\right)+4x^2\)

\(=t^2-5xt+4x^2\)

\(=t^2-4xt-xt+4x^2\)

\(=t\left(t-4x\right)-x\left(t-4x\right)\)

\(=\left(t-4x\right)\left(t-x\right)\)

\(=\left(x^2-x+1-4x\right)\left(x^2-x+1-x\right)\)

\(=\left(x^2-5x+1\right)\left(x^2-2x +1\right)\)

\(=\left(x^2-5x+1\right)\left(x-1\right)^2\)

2 tháng 3 2022

CAM ON - HOANG

22 tháng 11 2021

\(1,\\ 12x^6y^3:4x^3y=3x^3y^2\\ \left(x+1\right)\left(x^2-x+1\right)=x^3+1\\ 2x^2y\left(x^2+3xy\right)=3x^4y+6x^3y^2\\ 2,\\ a,=2xy\left(2x+3y-4\right)\\ b,=\left(x-3\right)\left(x+y\right)\\ c,=\left(x-2\right)\left(x+2\right)+y\left(x-2\right)=\left(x+y+2\right)\left(x-2\right)\\ d,=x^2-2x-5x+10=\left(x-2\right)\left(x-5\right)\\ 3,\\ a,\Leftrightarrow x^2-x^2+2x=2\\ \Leftrightarrow2x=2\Leftrightarrow x=1\\ b,\Leftrightarrow\left(x-2\right)\left(x-2+1\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

16 tháng 11 2021

\(=3\left(x-1\right)+x\left(x-1\right)\)

\(=\left(x-1\right)\left(x+3\right)\)

Cưu là mình vs (x^2+x)^2-2(x^2+x)-15

21 tháng 3 2018

27 tháng 12 2021

1: =(x-1-y)(x-1+y)

3: =(x-1)(x+1)(x-2)

25 tháng 9 2021

1)

a) \(=3x^2\left(x^2-1\right)-\left(x^3-1\right)+x^8-3x^4+3x^2-1\)

\(=3x^4-3x^2-x^3+1+x^8-3x^4+3x^2-1=x^8-x^3\)

2) 

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)-6\left(x^2+5x\right)+45\)

\(=\left(x^2+5x\right)^2-6\left(x^2+5x\right)-36+45\)

\(=\left(x^2+5x\right)^2-6\left(x^2+5x\right)+9=\left(x^2+5x-3\right)^2\)