Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=(x+1)(x+4)(x+2)(x+3) - 24
=(x^2+5x+4)(x^2+5x+6) - 24
=(x^2+5x+5-1)(x^2+5x+5+1) - 24 [hằng đẳng thức a^2-b^2 nha]
=(x^2+5x+5)^2-1^2-24
=(x^2+5x+5)^2 - 25
=(x^2+5x+5)^2 - 5^2
=(x^2+5x+5-5)(x^2+5x+5+5)
=(x^2+5x)(x^2+5x+10
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
Đặt \(x^2+5x+4=t\)
\(\Rightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=t\left(t+2\right)-24\)
\(=t^2+2t+1-25\)
\(=\left(t+1\right)^2-5^2\)
\(=\left(t+1+5\right)\left(t+1-5\right)\)
\(=\left(t+6\right)\left(t-4\right)\)
\(=x\left(x+5\right)\left(x^2+5x+10\right)\)
Ta có : \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\)\(\left(x+4\right)-24\)
= \(\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\) (*)
. Đặt \(x^2+5x+4=t\) (1)
(*) <=> \(t\left(t+2\right)-24=t^2+2t-24=\left(t-4\right)\left(t+6\right)\) (2)
Thay (1) vào (2) ta suy ra : \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\) \(\left(x+4\right)-24=\)\(\left(x^2+5x+4-4\right)\left(x^2+5x+4+6\right)\) = \(\left(x^2+5x\right)\left(x^2+5x+10\right)\) = \(x\left(x+5\right)\left(x^2+5x+10\right)\)
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left[\left(x+1\right)\left(x+4\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
\(=\left(x^2+5x+4\right)^2+2.\left(x^2+5x+4\right)+1-25\)
\(=\left(x^2+5x+4+1\right)^2-5^2\)
\(=\left(x^2+5x+5-5\right)\left(x^2+5x+5+5\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
\(=x\left(x+5\right)\left(x^2+5x+10\right)\)
(x+1)(x+4)(x+2)(x+3)-24
=(x2+5x+4)(x2+5x+6)-24
=(x2+5x+5-1)(x2+5x+5+1)-24
=(x2+5x+5)2-1-24
=(x2+5x+5)2-25
=x(x2+5x+10)(x+5)
Nhân tử là gì bạn ơi
giờ này còn đi hỏi bài làm gì
Sao em không tự làm đi
Đã ngu đã giốt còn hay hỏi nhiều
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\\ =\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\\ =\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(x^2+7x+11=y\)
\(\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\\ =\left(y+1\right)\left(y-1\right)-24\\ =y^2-1-24\\ =y^2-25\\ =\left(y-5\right)\left(y+5\right)\\ =\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\\ =\left(x^2+7x+6\right)\left(x^2+7x+16\right)\\ =\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(t=x^2+7x+10\) ta có:
\(=t\left(t+2\right)-24=t^2+2t-24\)
\(=t^2-4t+6t-24\)\(=t\left(t-4\right)+6\left(t-4\right)\)
\(=\left(t-4\right)\left(t+6\right)=\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
(x+2)(x+3)(x+4)(x+5)-24
=(x^2+7x+10)(x^2+7x+12)-24
Đặt x^2+7x+10=a
a(a+2)-24
=a^2+2a-24
=(a-4)(a+6)
=(x^2+7x+6)(x^2+7x+16)
=(x+1)(x+6)(x^2+7x+16)
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
\(\left(x+1\right).\left(x+2\right).\left(x+3\right).\left(x+4\right)-24\)
\(=[\left(x+1\right).\left(x+4\right)].[\left(x+2\right).\left(x+3\right)]-24\)
\(=\left(x^2+4x+x+4\right).\left(x^2+3x+2x+6\right)-24\)
\(=\left(x^2+5x+4\right).\left(x^2+5x+6\right)-24\)
Ta đặt \(n=x^2+5x+4\)
Lúc này biểu thức trở thành \(n.\left(n+2\right)-24\)
\(=n^2+2n-24\)
\(=n^2+2n+1-25\)
\(=\left(n+1\right)^2-5^2\)
\(=\left(n+1-5\right).\left(n+1+5\right)\)
\(=\left(n-4\right).\left(n+6\right)\)
\(=\left(x^2+5x+4-4\right).\left(x^2+5x+4+6\right)\)
\(=\left(x^2+5x\right).\left(x^2+5x+10\right)\)
Ta có : \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(\left(x+1\right)\left(x+4\right)\right)\left(\left(x+2\right)\left(x+3\right)\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
- Đặt \(x^2+5x+5=a\)
\(=\left(a-1\right)\left(a+1\right)-24=a^2-1-24=a^2-25\)
\(=\left(a-5\right)\left(a+5\right)\)
–9x^3 + 12x – 4y^2