Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có:
x³ + y³ + z³ - 3xyz
= (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz)
b, Từ:
x + y + z = 0
=> x + y = -z
<=> (x + y)^3 = (-z)^3
<=> x^3 + 3x^2y + 3xy^2 + y^3 = -z^3
<=> x^3 + y^3 + z^3 = -3x^2y - 3xy^2
<=> x^3 + y^3 + z^3 = -3xy(x+y)
<=> x^3 + y^3 + z^3 = -3xy(-z)
<=> x^3 + y^3 + z^3 = 3xyz
x2-y2+6x+6y = (x2-y2)+(6x+6y) = (x-y)(x+y)+6(x+y) = (x-y-6)(x+y)
\(5x^2-x+y-5y^2\)
\(=\left(5x^2-5y^2\right)-\left(x-y\right)\)
\(=5\left(x^2-y^2\right)-\left(x-y\right)\)
\(=5\left(x-y\right)\left(x+y\right)-\left(x-y\right)\)
\(=\left(x-y\right)\left[5\left(x+y\right)-1\right]\)
\(=\left(x-y\right)\left(5x+5y-1\right)\)
bài này 1h rùi,chắc chờ tui ngủ dậy làm;
= (x+y)3 - (x+y) + xy(x+y) =
= (x+y)((x+y)2 -1 +xy)) = (x+y)(x2 +3xy +y2 -1)
\(x^4+x^2y^2+y^4\)
\(=x^4+2x^2y^2+y^4-x^2y^2\)
\(=\left(x^2+y^2\right)^2-\left(xy\right)^2\)
\(=\left(x^2+y^2-xy\right)\left(x^2+y^2+xy\right)\)
\(\left(x+y+z\right)^2+\left(x+y-z\right)^2-4z^2=\left(x+y+z\right)^2+\left(x+y-z-2z\right)\left(x+y-z+2z\right)=\left(x+y+z\right)^2+\left(x+y-3z\right)\left(x+y+z\right)=\left(x+y+z\right)\left(x+y+z+x+y-3z\right)=\left(x+y+z\right)\left(2x+2y-2z\right)=2\left(x+y+z\right)\left(x+y-z\right)\)
Ta có:
(x + y + z)2 + (x + y – z)2 – 4z2
\(=\left(x+y-z\right)^2+\left(x+y-z\right)\left(x+y+3z\right)\)
\(=\left(x+y-z\right)\left(x+y+3z+x+y-z\right)\)
\(=2\left(x+y-z\right)\left(x+y+z\right)\)