Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Toán lớp 8
- Khóa học Toán lớp 8
Gửi câu trả lời của bạn
Bài 1
\(a,5x^2-10xy+5y^2\)
\(=5\cdot\left(x^2-2xy+y^2\right)\)
\(=5\cdot\left(x-y\right)^2\)
\(b,x^2-y^2+6y-9\)
\(=x^2-\left(y^2-6y+9\right)\)
\(=x^2-\left(y-3\right)^2\)
\(=\left(x-y+3\right)\cdot\left(x+y-3\right)\)
\(c,3x^4-75x^2y^2\)
\(=3x^2\cdot\left(x^2-25y^2\right)\)
\(=3x^2\cdot\left(x-5y\right)\cdot\left(x+5y\right)\)
\(d,x^4y+xy^4\)
\(=xy\left(x^3+y^3\right)\)
\(=xy\cdot\left(x+y\right)\cdot\left(x^2-xy+y^2\right)\)
\(\text{a)}x^3-6x^2+12x-8\)
\(=x^3-2x^2-4x^2+8x+4x-8\)
\(=\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(4x-8\right)\)
\(=x^2\left(x-2\right)+4x\left(x-2\right)+4\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+4x+4\right)\)
\(=\left(x-2\right)\left(x+2\right)^2\)
\(\text{b)}8x^2+12x^2y+6xy^2+y^3=\left(2x+y\right)^3\)
Bài 2:
\(\text{a) }x^7+1=\left(x^{\frac{7}{3}}\right)^3+1^3=\left(x^{\frac{7}{3}}+1\right)\left[\left(x^{\frac{7}{3}}\right)^2-x^{\frac{7}{3}}+1\right]=\left(x^{\frac{7}{3}}+1\right)\left(x^{\frac{14}{3}}-x^{\frac{7}{3}}+1\right)\)
\(\text{b) }x^{10}-1=\left(x^5\right)^2-1^2=\left(x^5-1\right)\left(x^5+1\right)\)
Bài 3:
\(\text{a) }69^2-31^2=\left(69-31\right)\left(69+31\right)=38.100=3800\)
\(\text{b) }1023^2-23^2=\left(1023-23\right)\left(1023+23\right)=1000.1046=1046000\)
a) \(4x^2-6x=2x\left(2x-3\right)\)
b) \(9x^4y^3+3x^2y^4=3x^2y^3\left(3x^2+y\right)\)
c) \(3\left(x-y\right)-5x\left(y-x\right)=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(5x+3\right)\left(x-y\right)\)
d) \(x^3-2x^2+5x=x\left(x^2-2x+5\right)\)
e) \(5\left(x+3y\right)-15x\left(x+3y\right)=\left(5-15x\right)\left(x+3y\right)\)
\(=5\left(1-3x\right)\left(x+3y\right)\)
f) \(2x^2\left(x+1\right)-4\left(x+1\right)=\left(2x^2-4\right)\left(x+1\right)\)
\(=\left(\sqrt{2}x-2\right)\left(\sqrt{2}x+2\right)\left(x+1\right)\)
Câu 1:
Ta có \(x^3+3x-5=x^3+2x+x-5=\left(x^2+2\right)x+x-5\)
để giá trị của đa thức \(x^3+3x-5\)chia hết cho giá trị của đa thức \(x^2+2\)
thì \(x-5⋮x^2+2\Rightarrow\left(x-5\right)\left(x+5\right)⋮x^2+2\Rightarrow x^2-25⋮x^2+2\)
\(\Leftrightarrow x^2+2-27⋮x^2+2\Rightarrow27⋮x^2+2\)
\(\Leftrightarrow x^2+2\inƯ\left(27\right)\)do \(x^2+2\inℤ,\forall x\inℤ\)
mà \(x^2+2\ge2,\forall x\inℤ\)
\(\Rightarrow x^2+2\in\left\{3;9;27\right\}\)\(\Leftrightarrow x^2\in\left\{1;7;25\right\}\)
mà \(x^2\)là số chính phương \(\forall x\inℤ\)
\(\Rightarrow x^2\in\left\{1;25\right\}\Leftrightarrow x\in\left\{\pm1;\pm5\right\}\)
**bạn nhớ thử lại nhé
\(KL...\)
??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
a) \(x^2-y^2-x-y\)
\(=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
b) \(x^2-y^2+2yz-z^2\)
\(=x^2-\left(y^2-2yz+z^2\right)\)
\(=x^2-\left(y-z\right)^2\)
\(=\left(x-y+z\right)\left(x+y-z\right)\)
a,x8 +x4 +1=x6 .x2 +x3 .x+1=x6 .x2-x2 +x3 .x-x+1+x+x2=x2.(x6-1)+x.(x3-1)+1+x+x2=x2.(x3-1).(x3+1)+x.(x-1).(x2+x+1)+1+x+x2
a) \(x^{m+2}-2x^m=x^m\left(x^2-2\right)\)
b) \(x^{k+1}-x^{k+2}=x^{k+1}\left(1-x\right)\)
a) xm+2 - 2xm = xm.x2 + 2.xm = xm( x2 - 2 ) = xm( x - √2 )( x + √2 )
b) xk+1 - xk+2 = xk+1 - xk+1.x = xk+1( 1 - x )
Bài 2:
a) \(x^2-y^2+3x-3y=\left(x^2-y^2\right)+\left(3x-3y\right)\)
\(=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\)
b) \(5x-5y+x^2-2xy+y^2=\left(5x-5y\right)+\left(x^2-2xy+y^2\right)\)
\(=5\left(x-y\right)+\left(x-y\right)^2=\left(x-y\right)\left(x-y+5\right)\)
c) \(x^2-5x+4=x^2-x-4x+4=\left(x^2-x\right)-\left(4x-4\right)\)
\(=x\left(x-1\right)-4\left(x-1\right)=\left(x-1\right)\left(x-4\right)\)
\(C=x^7+x^2+1\)
\(=x^7+x^6+x^5-x^6-x^5-x^4+x^4+x^3+x^2-x^3-x^2-x+x^2+x+1\)
\(=x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
\(D=x^8+x+1\)
\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)