K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2023

\((x+5)^2+4(x+5)(x-5)+4(x^2-10x+25)=0\\\Rightarrow(x+5)^2+4(x+5)(x-5)+4(x^2-2\cdot x\cdot5+5^2)=0\\\Rightarrow(x+5)^2+2\cdot(x+5)\cdot2(x-5)+4(x-5)^2=0\\\Rightarrow(x+5)^2+2\cdot(x+5)\cdot2(x-5)+[2(x-5)]^2=0\\\Rightarrow[(x+5)+2(x-5)]^2=0\\\Rightarrow(x+5+2x-10)^2=0\\\Rightarrow(3x-5)^2=0\\\Rightarrow3x-5=0\\\Rightarrow3x=5\\\Rightarrow x=\frac53\\\text{#}Toru\)

13 tháng 12 2023

Sao đề là phân tích mà lại "= 0" vậy bạn?

10 tháng 7 2021

`(x+3)^4+(x+5)^4-2`

`={[(x+3)^2]^2-1^2}+{[(x+5)^2]^2 -1^2}`

`=[(x+3)^2-1^2][(x+3)^2+1]+[(x+5)^2-1^2][(x+5)^2+1]`

`=(x+3-1)(x+3+1)[(x+3)^2+1]+(x+5-1)(x+5+1)[(x+5)^2+1]`

`=(x+2)(x+4)[(x+3)^2+1]+(x+4)(x+6)[(x+5)^2+1]`

`=(x+4){(x+2)[(x+3)^2+1]+(x+6)[(x+5)^2+1]}`

`=(x+4)(2x^3+24x^2+108x+176)`

10 tháng 7 2021

Bạn gì ơi hình như phải ra \(2\left(t+4\right)^2\left(x^2+8x+22\right)\)chứ nhỉ???

16 tháng 10 2020

(x - 5)2 - 4(x - 3)2 + 2(2x - 1)(x - 5) + (2x - 1)2

= [(x - 5)2 + 2(2x - 1)(x - 5) + (2x - 1)2) - [2(x - 3)]2

= (x - 5 + 2x - 1)2 - (2x - 6)2

= (3x - 6)2 - (2x - 6)2

= (3x - 6 - 2x + 6)(3x - 6 + 2x - 6) = x(5x - 12)

16 tháng 10 2020

( x - 5 )2 - 4( x - 3 )2 + 2( 2x - 1 )( x - 5 ) + ( 2x - 1 )2

= [ ( x - 5 )2 + 2( 2x - 1 )( x - 5 ) + ( 2x - 1 )2 ] - 22( x - 3 )2

= ( x - 5 + 2x - 1 )2 - ( 2x - 6 )2

= ( 3x - 6 )2 - ( 2x - 6 )2

= ( 3x - 6 - 2x + 6 )( 3x - 6 + 2x - 6 )

= x( 5x - 12 )

25 tháng 8 2021

\(B=x^8+2x^5-2x^4+x^2-2x-100+10x\left(x^4+x\right)+\left(5x-1\right)^2\)

\(=x^8+2x^5-2x^4+x^2-2x-100+10x^5+25x^2-10x+1\)

\(=x^8+12x^5-2x^4+36x^2-12x-99\)

\(=x^8+6x^5+9x^4+6x^5+36x^2+54x-11x^4-66x-99\)

\(=x^4\left(x^4+6x+9\right)+6x\left(x^4+6x+9\right)-11\left(x^4+6x+9\right)\)

\(=\left(x^4+6x+9\right)\left(x^4+6x-11\right)\)

6 tháng 12 2023

\(5x(2x+3)+6x+9\\=5x(2x+3)+3(2x+3)\\=(2x+3)(5x+3)\)

a: \(5x\left(2x+3\right)+6x+9\)

\(=5x\left(2x+3\right)+\left(6x+9\right)\)

\(=5x\left(2x+3\right)+3\left(2x+3\right)\)

\(=\left(2x+3\right)\left(5x+3\right)\)

b: \(3x\left(x+4\right)+48\left(x+4\right)+5\left(x+4\right)\)

\(=\left(x+4\right)\left(3x+48+5\right)\)

=(x+4)(3x+53)

 

3 tháng 11 2019

Ta có:

(x + 2)(x + 3)(x + 4)(x + 5) - 24

= [(x + 2)(x + 5)][(x + 3)(x + 4)] - 24

= (x2 + 5x + 2x + 10)(x2 + 4x + 3x + 12) - 24

= (x2 + 7x + 10)(x2 + 7x + 12) - 24

Đặt x2 + 7x + 10 = k 

=> k(k + 2) - 24 = k2 + 2k - 24 = k2 + 6x - 4x - 24 

                            = k(k + 6)  - 4(k  + 6)

                          = (k - 4)(k + 6)

=> (x + 2)(x + 3)(x + 4)(x + 5) - 24

= (x2 + 7x + 10 - 4)(x2 + 7x + 10 + 6)

= (x2 + 7x + 6)(x2 + 7x + 16)

3 tháng 11 2019

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)(1)

Đặt \(x^2+7x+11=t\)thay vào (1) ta được:
\(\left(t-1\right)\left(t+1\right)-24\)

\(=t^2-1-24\)

\(=t^2-25\)

\(=\left(t-5\right)\left(t+5\right)\)Thay \(t=x^2+7x+11\)ta được:

\(\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x^2+x+6x+6\right)\left(x^2+7x+16\right)\)

\(=\left[x\left(x+1\right)+6\left(x+1\right)\right]\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

25 tháng 2 2017

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Let \(t=x^2+7x+10\) we have:

\(=t\left(t+2\right)-24=t^2+2t-24\)

\(=\left(t-4\right)\left(t+6\right)=\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

1) Đa thức\(\left(x^2+x+1\right)\left(X^2+x+2\right)\)-12 được phân tích thành nhân tử là:A)\(\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)B)\(\left(x^2+x-5\right)\left(x+2\right)\left(x-1\right)\)C)\(\left(x^2-x+5\right)\left(x+2\right)\left(x-1\right)\)D)\(\left(x^2+x+5\right)\left(x-2\right)\left(x+1\right)\)2) \(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\) được phân tích thành nhân tử...
Đọc tiếp

1) Đa thức\(\left(x^2+x+1\right)\left(X^2+x+2\right)\)-12 được phân tích thành nhân tử là:

A)\(\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)

B)\(\left(x^2+x-5\right)\left(x+2\right)\left(x-1\right)\)

C)\(\left(x^2-x+5\right)\left(x+2\right)\left(x-1\right)\)

D)\(\left(x^2+x+5\right)\left(x-2\right)\left(x+1\right)\)

2) \(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\) được phân tích thành nhân tử là:

A)\(\left(x^2+5ax-5a^2\right)\left(x^2-5ax+5a^2\right)\)

B)\(\left(x^2-5ax-5a^2\right)\left(x^2+5ax+5a^2\right)\)

C)\(\left(x^2-5ax-5a^2\right)\left(x^2-5ax+5a^2\right)\)

D)\(\left(x^2+5ax+5a^2\right)^{^2}\)

3) Đa thức \(a^3+b^3+c^3-3abc\)  được phân tích thành nhân tử là:

A)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab+bc-ca\right)\)

B)\(\left(a-b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

C)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

D)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab+bc-ca\right)\)

4) Đa thức x(x+1)(x+2)(x+3)+1 được phân tích thành nhân tử là:

A)\(\left(x^2+3x+1\right)\left(x^2+3x-1\right)\)

B)\(\left(x^2+3x+1\right)^{^2}\)

C)\(\left(x^2+3x+1\right)\left(x^2-3x+1\right)\)

D) Cả B và C đều sai  

5) Câu trả lời đúng cho M=\(n^2\left(n+1\right)+2n\left(n+1\right)+360\) với \(n\in Z\)

A)M⋮4

B)M⋮5

C)M⋮6

D)M⋮9

6)Cho \(P=\left(2n+5\right)^{^2}-145\) với \(n\in N\)

A) P⋮4 ; B)P⋮3 ; C) P⋮5 ; D)P⋮6

7) Giá trị của biểu thức \(x^2-y^2-2y-1\) tại

x=502 ; y=497 là:

A) 3000

B)5000

C)4500

D) cả A và B đều sai 

 

 

 

2
AH
Akai Haruma
Giáo viên
29 tháng 1 2023

Bạn nên tách bài ra để đăng. Không nên đăng 1 loạt như thế này.

1) Đa thức\(\left(x^2+x+1\right)\left(X^2+x+2\right)\)-12 được phân tích thành nhân tử là:A)\(\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)B)\(\left(x^2+x-5\right)\left(x+2\right)\left(x-1\right)\)C)\(\left(x^2-x+5\right)\left(x+2\right)\left(x-1\right)\)D)\(\left(x^2+x+5\right)\left(x-2\right)\left(x+1\right)\) 2) \(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\) được phân tích thành nhân tử...
Đọc tiếp

1) Đa thức\(\left(x^2+x+1\right)\left(X^2+x+2\right)\)-12 được phân tích thành nhân tử là:

A)\(\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)

B)\(\left(x^2+x-5\right)\left(x+2\right)\left(x-1\right)\)

C)\(\left(x^2-x+5\right)\left(x+2\right)\left(x-1\right)\)

D)\(\left(x^2+x+5\right)\left(x-2\right)\left(x+1\right)\)

 

2) \(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\) được phân tích thành nhân tử là:

A)\(\left(x^2+5ax-5a^2\right)\left(x^2-5ax+5a^2\right)\)

B)\(\left(x^2-5ax-5a^2\right)\left(x^2+5ax+5a^2\right)\)

C)\(\left(x^2-5ax-5a^2\right)\left(x^2-5ax+5a^2\right)\)

D)\(\left(x^2+5ax+5a^2\right)^{^2}\)

 

3) Đa thức \(a^3+b^3+c^3-3abc\)  được phân tích thành nhân tử là:

A)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab+bc-ca\right)\)

B)\(\left(a-b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

C)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

D)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab+bc-ca\right)\)

 

5) Câu trả lời đúng cho M=\(n^2\left(n+1\right)+2n\left(n+1\right)+360\) với \(n\in Z\)

A)M⋮4

B)M⋮5

C)M⋮6

D)M⋮9

 

6)Cho \(P=\left(2n+5\right)^{^2}-145\) với \(n\in N\)

A) P⋮4 ; B)P⋮3 ; C) P⋮5 ; D)P⋮6

7) Giá trị của biểu thức \(x^2-y^2-2y-1\) tại

x=502 ; y=497 là:

A) 3000

B)5000

C)4500

D) cả A và B đều sai 

 

 

 

1

1: \(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)

=(x^2+x)^2+3(x^2+x)-10

=(x^2+x+5)(x^2+x-2)

=(x^2+x+5)(x+2)(x-1)

2: \(=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4\)

\(=\left(x^2+5ax\right)^2+10a^2\left(x^2+5ax\right)+25a^2\)

\(=\left(x^2+5ax+5a^2\right)^2\)

3: \(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

5: \(M=\left(n+1\right)\left(n^2+2n\right)+360\)

=n(n+1)(n+2)+360 chia hết cho 6

6A

7D