Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x - 5)2 - 4(x - 3)2 + 2(2x - 1)(x - 5) + (2x - 1)2
= [(x - 5)2 + 2(2x - 1)(x - 5) + (2x - 1)2) - [2(x - 3)]2
= (x - 5 + 2x - 1)2 - (2x - 6)2
= (3x - 6)2 - (2x - 6)2
= (3x - 6 - 2x + 6)(3x - 6 + 2x - 6) = x(5x - 12)
( x - 5 )2 - 4( x - 3 )2 + 2( 2x - 1 )( x - 5 ) + ( 2x - 1 )2
= [ ( x - 5 )2 + 2( 2x - 1 )( x - 5 ) + ( 2x - 1 )2 ] - 22( x - 3 )2
= ( x - 5 + 2x - 1 )2 - ( 2x - 6 )2
= ( 3x - 6 )2 - ( 2x - 6 )2
= ( 3x - 6 - 2x + 6 )( 3x - 6 + 2x - 6 )
= x( 5x - 12 )
\(=\left(x^2+2x\right)^2+4\left(x^2+2x\right)+3=\left(x^2+2x+1\right)\left(x^2+2x+3\right)\)
\(=\left(x+1\right)^2\left(x^2+2x+3\right)\)
\(B=x^8+2x^5-2x^4+x^2-2x-100+10x\left(x^4+x\right)+\left(5x-1\right)^2\)
\(=x^8+2x^5-2x^4+x^2-2x-100+10x^5+25x^2-10x+1\)
\(=x^8+12x^5-2x^4+36x^2-12x-99\)
\(=x^8+6x^5+9x^4+6x^5+36x^2+54x-11x^4-66x-99\)
\(=x^4\left(x^4+6x+9\right)+6x\left(x^4+6x+9\right)-11\left(x^4+6x+9\right)\)
\(=\left(x^4+6x+9\right)\left(x^4+6x-11\right)\)
dat \(x^2-2x+2=y\)
ta co pt
\(y^4+20x^2y^2+64x^4\)
\(=\left(8x^2\right)^2+2.8x^2.\frac{10}{8}y^2+\left(\frac{10^{ }}{8^{ }}y^2\right)^2-\frac{36}{64}y^4\)
\(=\left(8x^2+\frac{10}{8}y^2\right)^2-\left(\frac{6}{8}y^2\right)^2\)
\(=\left(8x^2+\frac{y^2}{2}\right)\left(8x^2+2y^2\right)\)
bạn thay y nữa là xong
\(\left(x^2-2x+2\right)^4+20x^2\left(x^2-2x+2\right)^2+64x^4\)
\(=\left(x^2-2x+2\right)^4+20x^2\left(x^2-2x+2\right)^2+100x^4-36x^4\)
\(=\left[\left(x^2-2x+2\right)^2+10x^2\right]^2-36x^4\)
\(=\left(x^4-4x^3+18x^2-8x+4\right)^2-\left(6x^2\right)^2\)
\(=\left(x^4-4x^3+24x^2-8x+4\right)\left(x^4-4x^3+12x^2-8x+4\right)\)
\(\left(x^2-2x+2\right)^4+20x^2\left(x^2-2x+2\right)+64x^4\)
=\(\left[\left(x^2-2x+2\right)^4+2.10x^2\left(x^2-2x+2\right)^2+100x^4\right]\)-100x4+64x2
=\(\left[\left(x^2-2x+2\right)^2+10x^2\right]^2-36x^2\)
=\(\left[\left(x^2-2x+2\right)^2+4x^2\right].\left[\left(x^2-2x+2\right)^2+16x^2\right]\)
\(2\left(x^2+x+1\right)^2-\left(2x+1\right)^2-\left(x^2+2x\right)^2\)
\(=2.\left[x^4+x^2+1+2x^3+2x+2x^2\right]-\left(4x^2+4x+1\right)-\left(x^4+4x^3+4x^2\right)\)
\(=x^4-2x^2+1=\left(x^2-1\right)^2=\left(x-1\right)^2\left(x+1\right)^2\)
Chúc bạn học tốt.
Bài 1:
a. $2x^3+3x^2-2x=2x(x^2+3x-2)=2x[(x^2-2x)+(x-2)]$
$=2x[x(x-2)+(x-2)]=2x(x-2)(x+1)$
b.
$(x+1)(x+2)(x+3)(x+4)-24$
$=[(x+1)(x+4)][(x+2)(x+3)]-24$
$=(x^2+5x+4)(x^2+5x+6)-24$
$=a(a+2)-24$ (đặt $x^2+5x+4=a$)
$=a^2+2a-24=(a^2-4a)+(6a-24)$
$=a(a-4)+6(a-4)=(a-4)(a+6)=(x^2+5x)(x^2+5x+10)$
$=x(x+5)(x^2+5x+10)$
Bài 2:
a. ĐKXĐ: $x\neq 3; 4$
\(A=\frac{2x+1-(x+3)(x-3)+(2x-1)(x-4)}{(x-3)(x-4)}\\ =\frac{2x+1-(x^2-9)+(2x^2-9x+4)}{(x-3)(x-4)}\\ =\frac{x^2-7x+14}{(x-3)(x-4)}\)
b. $x^2+20=9x$
$\Leftrightarrow x^2-9x+20=0$
$\Leftrightarrow (x-4)(x-5)=0$
$\Rightarrow x=5$ (do $x\neq 4$)
Khi đó: $A=\frac{5^2-7.5+14}{(5-4)(5-3)}=2$
bài 11
a) \(x^2-xy+x\\ =x\left(x-y+1\right)\)
b)
\(x^2-2xy-4+y^2\\ =\left(x^2-2xy+y^2\right)-4\\ =\left(x-y\right)^2-4\\ =\left(x-y-2\right)\left(x-y+2\right)\)
c)
\(x^3-x^2-16x+16\\ =x^2\left(x-1\right)-16\left(x-1\right)\\ =\left(x-1\right)\left(x-4\right)\left(x+4\right)\)
bài 12
\(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(2x^2-10x-3x-2x^2=26\)
\(-13x=26\\ x=-2\)
b)
\(2\left(x+5\right)-x^2-5x=0\\ 2\left(x+5\right)-x\left(x+5\right)=0\\ \left(x+5\right)\left(2-x\right)=0\\ \left[{}\begin{matrix}x+5=0\\2-x=0\end{matrix}\right.\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Khó quá , bó tay
\(\left(x^2-2x+2\right)^4-20x^2\left(x^2-2x+2\right)+64x^4\)
\(=\left[\left(x^2-2x+2\right)^2\right]^2-2.\left(x^2-2x+2\right)^2.10x^2+\left(10x^2\right)^2-36x^4\)
\(=\left[\left(x^2-2x+2\right)^2-10x^2\right]^2-\left(6x^2\right)^2\)\(=\left[\left(x^2-2x+2\right)^2-4x^2\right]\left[\left(x^2-2x+2\right)^2-16x^2\right]\)
\(=\left(x^2-2x+2+2x\right)\left(x^2-2x+2-2x\right)\left(x^2-2x+2-4x\right)\left(x^2-2x+2+4x\right)\)
\(=\left(x^2+2\right)\left(x^2-4x+2\right)\left(x^2-6x+2\right)\left(x^2+2x+2\right)\)