Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
1) sửa đề: \(x^4+x^3-4x-4=x^3\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x^3-4\right)\)
2) \(x^2-\left(a+b\right)x+ab=x^2-ax-bx+ab=\left(x^2-ax\right)-\left(bx-ab\right)\)
\(=x\left(x-a\right)-b\left(x-a\right)=\left(x-a\right)\left(a-b\right)\)
3) \(5xy^3-2xyz-15y^2+6z=\left(5xy^3-15y^2\right)-\left(2xyz-6z\right)\)
\(=5y^2\left(xy-3\right)-2z\left(xy-3\right)=\left(xy-3\right)\left(5y^2-2z\right)\)
\(a^3-a^2x-ay+xy\)
\(=a^2\left(a-x\right)-y\left(a-x\right)\)
\(=\left(a-x\right)\left(a^2-y\right)\)
\(4x^2-y^2+4x+1\)
\(=\left(4x^2+4x+1\right)-y^2\)
\(=\left(2x+1\right)^2-y^2=\left(2x-y+1\right)\left(2x+y+1\right)\)
\(x^3-x+y^3-y\)
\(=\left(x^3+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
a)a3 - a2x - ay +xy
=(a3 - a2x) - (ay - xy)
=a2(a-x) - y(a-x)
=(a-x).(a2 - y)
a) 5x2 - 5xy + 7y - 7x = ( 5x2 - 5xy ) - ( 7x - 7y ) = 5x( x - y ) - 7( x - y ) = ( x - y )( 5x - 7 )
b) x2 - y2 + 2x + 1 = ( x2 + 2x + 1 ) - y2 = ( x + 1 )2 - y2 = ( x - y + 1 )( x + y + 1 )
c) 3x2 + 6xy + 3y2 - 3z2 = 3( x2 + 2xy + y2 - z2 ) = 3[ ( x2 + 2xy + y2 ) - z2 ] = 3[ ( x + y )2 - z2 ] = 3( x + y - z )( x + y + z )
d) ab( x2 + y2 ) + xy( a2 + b2 ) = abx2 + aby2 + a2xy + b2xy
= ( a2xy + abx2 ) + ( aby2 + b2xy )
= ax( ay + bx ) + by( ay + bx )
= ( ay + bx )( ax + by )
x2 + 6x - y2 + 9 =
= ( x2 + 6x + 9 ) - y2
= ( x + 3 )2 - y2
= ( x + 3 - y ) . ( x + 3 + y )
Hok tốt!!!!!!!!!!!
a , \(-q^3+12q^2x-48qx^2+64x^3\)
\(=-\left(q^3-12q^2x+48qx^2-64x^3\right)\)
\(=\)\(-\left(q-4x\right)^3\)
b , x2 + 2xy - y2 - 9
= - ( x2 - 2xy + y2 ) - 9
= - ( x - y )2 - 9
= ( - x + y - 3 ) ( x - y + 3 )
3 , 1 - m2 + 2mn - n2
= 1 - ( m2 - 2mn + n2 )
= 1 - ( m - n )2
= ( 1 - m + n ) ( 1 + m - n )
4 , x3 - 8 + 6a2 - 12a
= x3 + 6a2 - 12a + 8
= x3 + 6a2 - 12a + 4 + 4
= x3 + ( 6a2 - 12a + 4 ) + 4
= x3 + ( 3a - 2 )2 + 4
= ( x + 3a - 2 + 2 ) ( x2 + 3a + 2 + 2 )
( Mai làm tiếp mấy ý sau '-' muộn rồi ~ )
5 , x2 - 2xy + y2 - xz - yz
= ( x2 - 2xy + y2 ) - ( xz + yz )
= ( x - y )2 - z ( x + y )
= ( x - y ) 2 - z ( x - y )
= ( x - y ) ( x - y - z )
6 , x2 - 4xy + 4y 2 - z2 + 4z - 4t2
=( x2 - 4xy + 4y 2 ) - (z2 - 4z +4 ) . t2
= ( x - y )2 - ( z - 2 )2 . t2
= ( x - y - z - 2 ) ( x - y + z - 2 ) t2
7 , 25 - 4x2 - 4xy - y2
= 25 + ( - 4x2 - 4xy + y2 )
= 25 + ( 2x - y )2
= ( 5 + 2x - y ) ( 5 + 2x + y )
8 ,
x3 + y3 + z3 - 3xyz
= (x+y)3 - 3xy (x - y ) + z3 - 3xyz
= [ ( x + y)3 + z3 ] - 3xy ( x + y + z )
= ( x + y + z )3 - 3z ( x + y )( x + y + z ) - 3xy ( x - y - z )
= ( x + y + z )[( x + y + z )2 - 3z ( x + y ) - 3xy ]
= ( x + y + z )( x2 + y2 + z2 + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= ( x + y + z)(x2 + y2 + z2 - xy - xz - yz)
x(x+1)2 + x(x-5) - 5(x+1)2
= (x+1)2 (x -5) + x(x-5)
= [(x+1)2 + x](x-5)
=(x2 + 2x + x +1)(x-5)
= (x2 + 3x+1)(x-5)
2. x2(y-z) + y2(z-x) + z2(x-y)
= x2[(y-x) +(x-z)] + y2(z-x) + z2 (x-y)
= x2(y-x) + x2(x-z) + y2(z-x) + z2(x-y)
= x2(y-x) + x2(x-z) - y2(x-z) - z2(y-x)
= (y-x)(x2-z2) + (x-z)(x2 -y2)
= (y-x)(x-z)(x+z) + (x-z)(x-y)(x+y)
= (x-y)(x-z)(x+y - x -z)
= (x-y)(x-z)(y-z)
a: \(x^4+25x^2+20x-4\)
\(=x^4-5x^3+2x^2+5x^3-25x^2+10x-2x^2+10x-4\)
\(=x^2\left(x^2-5x+2\right)+5x\left(x^2-5x+2\right)-2\left(x^2-5x+2\right)\)
\(=\left(x^2-5x+2\right)\left(x^2+5x-2\right)\)
b: \(=x^4-6x^2-x^2+9\)
\(=\left(x^2-3\right)^2-x^2\)
\(=\left(x^2-x-3\right)\left(x^2+x-3\right)\)
c: \(=abx^2+aby^2-a^2xy-b^2xy\)
\(=\left(abx^2-b^2xy\right)+\left(aby^2-a^2xy\right)\)
\(=xb\left(ax-by\right)+ay\left(by-ax\right)\)
\(=\left(ax-by\right)\cdot\left(xb-ay\right)\)
1. 1+ x2 + 2x- y2
= (x2 + 2x+1) -y2
= (x+1)2 -y2
= (x+1-y)(x+1+y)
2. x2+ x + y2 + y + 2xy
= (x2 + 2xy + y2) + (x+y)
= (x+y)2 + (x+y)
=(x+y)(x+y+1)