\(8x^6-\frac{1}{12...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2020

1)\(8x^6-\frac{1}{125}y^3=\left(2x^2\right)^3-\left(\frac{1}{5}y\right)^3\)

Bạn tự lm tiếp.AD HĐT số (7)

2)\(\left(x+4\right)^3-64=\left(x+4\right)^3-4^3\)

AD HĐT số (7).Tự lm tiếp

3)\(x^6+1=\left(x^2\right)^3+1\)

AD HĐT số (7).Tự lm tiếp

4)\(x^9+1=\left(x^3\right)^3+1\)

AD HĐT số (7).Tự lm tiếp

5,\(x^{12}-y^4=\left(x^6\right)^2-\left(y^2\right)^2\)

AD HĐT số (3).Tự lm tiếp

6)\(x^3+6x^2+12x+8=\left(x+2\right)^3\)

AD HĐT số (4)

7)\(x^3-15x^2+75x-125=\left(x-5\right)^3\)

AD HĐT số (5)

8)\(27a^3-54a^2b+36ab^2-8b^3\)

\(=\left(3a\right)^3-3.\left(3a\right)^2.2b+3.3a.\left(2b\right)^2-\left(2b\right)^3\)

\(=\left(3a-2b\right)^3\)

AD HĐT số (5)

5 tháng 7 2016

a) \(x^2+4x+3=\left(x^2+4x+4\right)-1=\left(x+2\right)^2-1^2=\left(x+1\right)\left(x+3\right)\) (mình sửa lại)

b) \(x^2+8x-9=\left(x^2+8x+16\right)-25=\left(x+4\right)^2-5^2=\left(x-1\right)\left(x+9\right)\)

c) \(3x^2+6x-9=3\left[\left(x^2+2x+1\right)-4\right]=3\left[\left(x+1\right)^2-2^2\right]=3\left(x-1\right)\left(x+3\right)\)

d) \(2x^2+x-3=2x^2-4x+2+5x-5=2\left(x^2-2x+1\right)+5\left(x-1\right)=2\left(x-1\right)^2+5\left(x-1\right)=\left(x-1\right)\left(2x+3\right)\)

 

6 tháng 7 2016

tik nhé Toán lớp 8

19 tháng 7 2018

\(a,\frac{1}{64}x^6-125y^3\)

\(=\left(\frac{1}{2}x\right)^6-\left(5y\right)^3\)

\(=\left(\frac{1}{4}x^2\right)^3-\left(5y\right)^3\)

\(\left(\frac{1}{4}x^2-5y\right)\left[\left(\frac{1}{4}x^2\right)^2+\left(\frac{1}{4}x^2\right).5y+25y^2\right]\)

\(b,27a^3-54a^2b+36ab^2-8b^3\)

\(=\left(3a\right)^3-3.2.\left(3a\right)^2b+3.3a.\left(2b\right)^2-\left(2b\right)^3\)

\(=\left(3a-2b\right)^3\)

\(c,x^6-x^6\)

\(=0\)

\(d,10x-25-x^2\)

\(=-x^2+10x-25\)

\(=-\left(x^2-10x+25\right)\)

\(=-\left(x-5\right)^2\)

2 tháng 8 2020

Bài làm:

a) \(x^6-6x^4+12x^2-8\)

\(=\left(x^2-2\right)^3\)

b) \(x^2+16-8x=\left(x-4\right)^2\)

c) \(10x-x^2-25=-\left(x-5\right)^2\)

d) \(9\left(a-b\right)^2-4\left(x-y\right)^2\)

\(=\left[3\left(a-b\right)\right]^2-\left[2\left(x-y\right)\right]^2\)

\(=\left(3a-3b-2x+2y\right)\left(3a-3b+2x-2y\right)\)

e) \(\left(x+y\right)^2-2xy+1\)

\(=x^2+2xy+y^2-2xy+1\)

\(=x^2+y^2+1\)

sai sai

2 tháng 8 2020

a.  \(x^6-6x^4+12x^2-8=\left(x^2\right)^3-3\left(x^2\right)^2.2+3x^22-2^3=\left(x^2-2\right)^3\)

b. \(x^2+16-8x=x^2-8x+4^2=\left(x-4\right)^2\)

c. \(10x-x^2-25=10x-x^2-5^2=-\left(x-5\right)^2\)

d. \(9\left(a-b\right)^2-4\left(x-y\right)^2=\left[3\left(x-y\right)-2\left(x+y\right)\right]\left[3\left(x-y\right)+2\left(x+y\right)\right]\)

\(=\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)=\left(x-5y\right)\left(5x-y\right)\)

e. \(\left(x+y\right)^2-2xy+1=x^2+2xy+y^2-2xy+1=x\left(x+2y\right)-y\left(y+2x\right)+2y^2+1\)

\(=x\left(x+y\right)-y\left(y+x\right)+xy-yx+2y^2+x=\left(x-y\right)\left(x+y\right)+2y^2+x\)

AH
Akai Haruma
Giáo viên
17 tháng 10 2018

a)

\(25x^2-9(x+y)^2=(5x)^2-(3x+3y)^2\)

\(=(5x-3x-3y)(5x+3x+3y)=(2x-3y)(8x+3y)\)

b)

\(x^2-x-2=x^2+x-2x-2=x(x+1)-2(x+1)=(x-2)(x+1)\)

c)

\(3x^2-11x+6=3x^2-9x-2x+6\)

\(=3x(x-3)-2(x-3)=(x-3)(3x-2)\)

d)

\(x^2+5x+8\): biểu thức không phân tích được thành nhân tử

AH
Akai Haruma
Giáo viên
17 tháng 10 2018

e)

\(x^2+8x+7=x^2+x+7x+7\)

\(=x(x+1)+7(x+1)=(x+1)(x+7)\)

g)

\(x^2-6x-16=x^2-6x+9-25\)

\(=(x-3)^2-5^2=(x-3-5)(x-2+5)=(x-8)(x+2)\)

h)

\(4x^2-8x+3=4(x^2-2x+1)-1\)

\(=4(x-1)^2-1=(2x-2)^2-1^2=(2x-2-1)(2x-2+1)\)

\(=(2x-3)(2x-1)\)

i)

\(3x^2-11x+6=3x^2-9x-2x+6\)

\(=3x(x-3)-2(x-3)=(3x-2)(x-3)\)

22 tháng 10 2019

Bài 1:

\(6x^2-2\left(x-y\right)^2-6y^2\)

\(=6\left(x-y\right)\left(x+1\right)-2\left(x-y\right)^2\)

\(=2\left(x-y\right)\left(3x+3-x+y\right)\)

\(=2\left(x-y\right)\left(2x+3+y\right)\)

Bài 2:

\(P=\left(3x-1\right)^2+2\left(3x-1\right)\left(x+1\right)+\left(x+1\right)^2\)

\(=\left(3x-1-x-1\right)^2\)

\(=\left(2x-2\right)^2\)(1)

b) Thay \(x=\frac{9}{4}\)vào (1) ta được: 

\(\left(2.\frac{9}{4}-2\right)^2\)

\(=\frac{25}{4}\)

Vậy giá trị của P \(=\frac{25}{4}\)khi \(x=\frac{9}{4}\)

Bài 3:

Ta có: \(M=x^2+4x+5\)

\(=\left(x+2\right)^2+1\)

Vì \(\left(x+2\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x+2\right)^2+1\ge0+1;\forall x\)

Hay \(M\ge1;\forall x\)

Dấu"="xảy ra \(\Leftrightarrow\left(x+2\right)^2=0\)

                       \(\Leftrightarrow x=-2\)

Vậy \(M_{min}=1\Leftrightarrow x=-2\)

22 tháng 10 2019

Bài 1 : trên là sai nha mình làm lại

\(6x^2-2\left(x-y\right)^2-6y^2\)

\(=6\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)

\(=2\left(x-y\right)\left(3x+3y-x+y\right)\)

\(=2\left(x-y\right)\left(2x+4y\right)\)

\(=4\left(x-y\right)\left(x+2y\right)\)

4 tháng 9 2016

\(B=x^3-9x^2+27x-27\)

\(B=\left(x-3\right)\left(x^2+3x+9\right)-9x\left(x-3\right)\)

\(B=\left(x-3\right)\left(x^2-6x+9\right)\)

\(B=\left(x-3\right)\left(x-3\right)^2\)

\(B=\left(x-3\right)^3\)

Thay x = 13 vào, có:

\(B=\left(13-3\right)^3=10^3=1000\)

4 tháng 9 2016

\(A=x^3+15x^2+75x+125\)

\(A=\left(x+5\right)\left(x^2+5x+25\right)+15x\left(5+x\right)\)

\(A=\left(x+5\right)\left(x^2+6x+30\right)\)

Thay x=-10, ta có:

 \(A=\left(5-10\right)\left[\left(-10\right)^2+6.\left(-10\right)+30\right]\)

\(A=-5.70\)

\(A=-350\)

31 tháng 8 2017

a) \(A=\dfrac{\left(-2\right)^5}{\left(-2\right)^3}=\left(-2\right)^{5-3}=\left(-2\right)^2=4\)

b) \(y\ne0:B=\dfrac{\left(-y\right)^7}{\left(-y\right)^3}=\left(-y\right)^{7-3}=\left(-y\right)^4=y^4\)

c) \(x\ne0:C=\dfrac{\left(x\right)^{12}}{\left(-x\right)^{10}}=\left(x\right)^{12-10}=\left(x\right)^2=x^4\)

d) \(x\ne0:D=\dfrac{2x^6}{\left(2x\right)^3}=\dfrac{2x^6}{8x^3}=\dfrac{1}{4}\left(x\right)^{6-3}=\dfrac{1}{4}\left(x\right)^3\)

e) \(x\ne0:E=\dfrac{\left(-3x\right)^5}{\left(-3x\right)^2}=\left(-3x\right)^{5-2}=\left(-3x\right)^3=-27x^3\)

f) \(x,y\ne0:F=\dfrac{\left(xy^2\right)^4}{\left(xy^2\right)^2}=\left(xy^2\right)^{4-2}=\left(xy^2\right)^2=x^2y^4\)

i) \(x\ne-2:I=\dfrac{\left(x+2\right)^9}{\left(x+2\right)^6}=\left(x+2\right)^{9-6}=\left(x+2\right)^3\)

30 tháng 8 2017

A),(-2)5:(-2)3=(-2)2=4

B) (-y)7 :(-y)3=y4

14 tháng 5 2019

casio fx 570vn

a: \(\Leftrightarrow x^2\left(x^2+x-12\right)=0\)

\(\Leftrightarrow x^2\left(x+4\right)\left(x-3\right)=0\)

hay \(x\in\left\{0;-4;3\right\}\)

d: \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x-6\right)\left(x^2+5x+4\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)=0\)

hay \(x\in\left\{-6;1;-1;-4\right\}\)

f: \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)^2-2\left(x^2+x\right)-24=0\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)

hay \(x\in\left\{-3;2\right\}\)