Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Đặt a + b = x ; a - b = y. Khi đó:
\(\left(a+b\right)^3-\left(a-b\right)^3\)
\(\Leftrightarrow x^3-y^3\)
\(\Leftrightarrow\left[x-y\right]\left[x^2+xy+y^2\right]\)
Thế lại vào ta có:
\(\Leftrightarrow\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(\Leftrightarrow\left[\left(a-a\right)+\left(b+b\right)\right]\left[\left(a^2+b^2+2ab\right)+\left(a^2-b^2\right)+\left(a^2+b^2-2ab\right)\right]\)
\(\Leftrightarrow2b\left[\left(a^2+a^2+a^2\right)+\left(b^2-b^2+b^2\right)+\left(2ab-2ab\right)\right]\)
\(\Leftrightarrow2b\left[3a^2+b^2\right]\)
Mik làm tuỳ theo mình piết thôi nhé
a) ( a + b )3- ( a - b )3= a3 + b3 - a3 - b3 = a3 - a3 + b3 - b3 = 0
b) tương tự như ở trên!!! Hơi khác một tí!!!
c) ( 6x - 1 )2 - ( 3x + 2 ) = ..........
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(a+b\right)^3-\left(a-b\right)^3\)
\(=\left(a+b-a+b\right)\left(\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right)\)
\(=2b\left(\left(a+b\right)^2+\left(a^2-b^2\right)+\left(a-b\right)^2\right)\)
\(\left(a+b\right)^3+\left(a-b\right)^3\)
\(=\left(a+b+a-b\right)\left(\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right)\)
\(=2a\left(\left(a+b\right)^2-\left(a^2-b^2\right)+\left(a-b\right)^2\right)\)
a) (a+b)3 -(a-b)3 = a3 + 3a2b + 3ab2 +b3 - a3 + 3a2b - 3ab2 +b3
= 2a3 + 6a2b + 2b3
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ \(=3y^2-6y-2x+1\)
b/ \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
c/ \(=\left(2-x\right)^3\)
d/ \(=xy^2+x^2y+3xy+x^2y+x^3+3x^2-3xy-3x^2-9x\)
\(=xy\left(y+x+3\right)+x^2\left(y+x+3\right)-3x\left(y+x+3\right)\)
\(=\left(xy+x^2-3x\right)\left(y+x+3\right)=x\left(y+x-3\right)\left(y+x+3\right)\)
e/ \(=xy-x^2+2x-y^2+xy-2y\)
\(=x\left(y-x+2\right)-y\left(y-x+2\right)=\left(x-y\right)\left(y-x+2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) =(2x+3y-1)2
b)=-(x-1)3
c)=-(x3-6x2+12x-8)=-(x-2)3
d)x3 + 2x2y + xy2 – 9x
= x(x2 + 2xy + y2 -9)
= x[(x2 + 2xy + y2) - 32]
= x[(x + y)2 - 32]
= x (x + y – 3)(x + y + 3)
e) 2x-2y-x2+2xy-y2=2(x-y)-(x-y)2=(x-y)(2-x+y)
![](https://rs.olm.vn/images/avt/0.png?1311)
2x4 - 3x3 - 7x2 +6x+8
= 2x4 - 4x3 + x3 - 2x2 - 5x2 +10x - 4x +8
= 2x3.(x-2) +x2.(x-2) - 5x.(x-2) - 4.(x-2)
= (x-2).(2x3 +x2 - 5x -4)
= (x-2).(2x3 + 2x2 - x2 - x - 4x-4)
= (x-2).(x+2).(2x2 -x -4)
....
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(9\left(2x-3\right)^2-4\left(x+1\right)^2\)
\(=\left[3\left(2x-3\right)-2\left(x+1\right)\right]\left[3\left(2x-3\right)+2\left(x+1\right)\right]\)
\(=\left(6x-9-2x-2\right)\left(6x-9+2x+2\right)\)
\(=\left(4x-11\right)\left(8x-7\right)\)
b) \(\left(x^2+4y^2-20\right)-16\left(xy-4\right)^2\)
\(=\left[\left(x^2-4xy+4y^2\right)-4\right]\left[\left(x^2+4xy+4y^2\right)-36\right]\)
\(=\left[\left(x-2y\right)^2-4\right]\left[\left(x+2y\right)^2-36\right]\)
\(=\left(x-2y-2\right)\left(x-2y+2\right)\left(x+2y-6\right)\left(x+2y+6\right)\)
a. 9 ( 2x - 3 )2 - 4 ( x + 1 )2
= [ 3 ( 2x - 3 ) ]2 - [ 2 ( x + 1 ) ]2
= [ 3 ( 2x - 3 ) - 2 ( x + 1 ) ] [ 3 ( 2x - 3 ) + 2 ( x + 1 ) ]
= ( 6x - 9 - 2x - 2 ) ( 6x - 9 + 2x + 2 )
= ( 4x - 11 ) ( 8x - 7 )
b. ( x2 + 4y2 - 20 )2 - 16 ( xy - 4 )2
= ( x2 + 4y2 - 20 )2 - [ 4 ( xy - 4 ) ]2
= [ x2 + 4y2 - 20 - 4 ( xy - 4 ) ] [ x2 + 4y2 - 20 + 4 ( xy - 4 ) ]
= ( x2 + 4y2 - 20 - 4xy + 16 ) ( x2 + 4y2 - 20 + 4xy - 16 )
= ( x2 + 4y2 - 4xy - 4 ) ( x2 + 4y2 + 4xy - 36 )
= [ ( x - 2y )2 - 22 ] [ ( x + 2y )2 - 62 ]
= ( x - 2y - 2 ) ( x - 2y + 2 ) ( x + 2y - 6 ) ( x + 2y + 6 )
![](https://rs.olm.vn/images/avt/0.png?1311)
a) = (xyz+xy) +(z+1) +(yz+zx)+(x+y)
= xy(z+1) +(z+1)+z(x+y)+(x+y)
= (z+1)(xy+1)+(x+y)(Z+1)
=(z+1)(xy+1+x+y)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2x^2y^3-\frac{x}{4}-4y^6\)
đây là pt bậc 2 của y^3 , ta đặt y^3=z ta được
\(-\left(4z^2+\frac{2.2xz}{2}+\frac{x^2}{4}\right)+\left(\frac{x^2}{4}-\frac{x}{4}\right)\)
\(-\left(2z+\frac{x}{2}\right)^2+\left(\frac{x^2}{4}-\frac{x}{4}\right)\)
\(-\left\{\left(2x+\frac{x}{2}\right)^2-\left(\frac{x^2}{4}-\frac{x}{4}\right)\right\}\)
\(-\left\{\left(2x+\frac{x}{2}+\sqrt{\frac{x^2}{4}-\frac{x}{4}}\right)\left(2x+\frac{x}{2}-\sqrt{\frac{x^2}{4}-\frac{x}{4}}\right)\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
câu này là câu b và c nhé nếu là câu a thì cái bt = cái khác
Gỉa sử : ( bt = biểu thức :D )
\(bt=\left(x^2+ax+b\right)\left(x^2+cx+d\right)=x^4+\left(a+c\right)x^3+\left(d+ac+b\right)x^2+\left(bc+ad\right)x+bd\)
Ta có : \(\hept{\begin{cases}a+c=-6\\d+ac+b=14\\bc+ad=-7and:bd=1\end{cases}}\)(do không có ngoặc 4
Đến đây thì giải ra như hpt thôi
Dạng này được cái không cần sáng tạo già cả chỉ cần theo công thức nhưng khá khó trong việc giải hệ
a) Giả sử
\(4x^4+4x^3+5x^2+2x+1=4\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)
Khai triển vế trái = \(4x^4+4\left(a+c\right)x^3+4\left(b+d+ac\right)x^2+4\left(ad+bc\right)x+4bd\)
Rồi sử dụng đồng nhất thức, ta có hpt gồm các pt
\(4\left(a+c\right)=4\),\(4b+4d+4ac=5\),\(4ad+4bc=2\),\(4bd=1\)
Rồi ...
Các câu còn lại tương tự:))
\(\left(6x-1\right)^2-\left(3x+2\right)\)
\(=36x^2-12x+1-3x-2\)
\(=36x^2-15x-1\)
bn ktra lại đề nhé
hk tốt