\(\left(x^2+2x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2016

a)A=(x2+2x)+9x2+18x+20

=(x2+2x)+9(x2+2x)+20

Đặt t=x2+2x đc:

t+9t+20=10t+20=10(t+2)

Thay t=x2+2x vào đc:

10(x2+2x+2)

 

21 tháng 8 2016

b sai đề

15 tháng 1 2018

a)    \(3x^2-7x+2\)

\(=3x^2-6x-x+2\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

b)   \(a\left(x^2+1\right)-x\left(a^2+1\right)\)

\(=ax^2+a-a^2x-x\)

\(=ax\left(x-a\right)-\left(x-a\right)\)

\(=\left(x-a\right)\left(ax-1\right)\)

18 tháng 2 2019

\(\left(x^2-xy+y^2\right)^2\left(x^2+xy+y^2\right)^2\)

Phương trình thuần nhất đẳng cấp bậc 8 bạn nha :D

16 tháng 7 2019

\(x^5+y^5-\left(x+y\right)^5\)

\(=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+8xy^4+y^5\right)\)

\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)

\(=-5xy\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]\)

\(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)

16 tháng 7 2019

h)Ta có : \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt\(x^2+7x+11=y\)

\(=>p\left(x\right)=\left(y-1\right)\left(y+1\right)-24=y^2-1-24=y^2-25=\left(y-5\right)\left(y+5\right)\)

Thay \(y=x^2+7x+11\) vào ta có : \(p\left(x\right)=\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

16 tháng 7 2019

\(f)m\left(x\right)=x^6+27=\left(x^2+3\right)\left(x^4-3x^2+9\right)\)

e)\(\left(x^2+x\right)^2+4\left(x^2+x\right)-12=\left(x^2+x\right)^2-2\left(x^2+x\right)+6\left(x^2+x\right)-12=\left(x^2+x\right)\left(x^2+x-2\right)+6\left(x^2+x-12\right)\)

\(=\left(x^2+x+6\right)\left(x^2+x-2\right)=\left(x^2+x+6\right)\left(x^2-x+2x-2\right)=\left(x^2+x+6\right)\left[x\left(x-1\right)+2\left(x-1\right)\right]=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)

8 tháng 7 2019

a) \(\left(x^2-x+2\right)^2+\left(x-2\right)^2\)

\(=\left(x^4-2x^3+5x^2-4x+4\right)+\left(x^2-4x+4\right)\)

\(=x^4-2x^3+6x^2-8x+8\)

\(=\left(x^4-2x^3+2x^2\right)+\left(4x^2-8x+8\right)\)

\(=x^2\left(x^2-2x+2\right)+4\left(x^2-2x+2\right)\)

\(=\left(x^2+4\right)\left(x^2-2x+2\right)\)

8 tháng 7 2019

\(x^4-9x^3+28x^2-36x+16\)

\(=x^4-x^3-8x^3+8x^2+20x^2-20x-16x+16\)

\(=\left(x^4-x^3\right)-\left(8x^3-8x^2\right)+\left(20x^2-20x\right)-\left(16x-16\right)\)

\(=x^3\left(x-1\right)-8x^2\left(x-1\right)+20x\left(x-1\right)-16\left(x-1\right)\)

\(=\left(x-1\right)\left(x^3-8x^2+20x-16\right)\)

\(=\left(x-1\right)\left(x^3-2x^2-6x^2+12x+8x-16\right)\)

\(=\left(x-1\right)[x^2\left(x-2\right)-6x\left(x-2\right)+8\left(x-2\right)]\)

\(=\left(x-1\right)\left(x-2\right)\left(x^2-6x+8\right)\)

\(=\left(x-1\right)\left(x-2\right)\left(x^2-4x-2x+8\right)\)

\(=\left(x-1\right)\left(x-2\right)[x\left(x-4\right)-2\left(x-4\right)]\)

\(=\left(x-1\right)\left(x-2\right)\left(x-2\right)\left(x-4\right)\)

\(=\left(x-1\right)\left(x-2\right)^2\left(x-4\right)\)

6 tháng 6 2019

\(a,\)\(x^3-13x-12\)

\(=x^3-x-12x-12\)

\(=x\left(x^2-1\right)-12\left(x+1\right)\)

\(=x\left(x-1\right)\left(x+1\right)-12\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x-12\right)\)

\(=\left(x+1\right)\left(x^2-4x+3x-12\right)\)

\(=\left(x+1\right)\left[x\left(x-4\right)+3\left(x+4\right)\right]\)

\(=\left(x+1\right)\left(x-4\right)\left(x+3\right)\)

6 tháng 6 2019

a) \(x^3-13x-12\)

\(=x^3+x^2-x^2-x-12x-12\)

\(=x^2\left(x+1\right)-x\left(x+1\right)-12\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x-12\right)\)

\(=\left(x+1\right)\left(x^2-4x+3x-12\right)\)

\(=\left(x+1\right)\left[x\left(x-4\right)+3\left(x-4\right)\right]\)

\(=\left(x+1\right)\left(x-4\right)\left(x+3\right)\)

b) \(2x^4+3x^3-9x^2-3x+2\)câu này hình như sai đề rồi, bạn xem lại nhen

c) \(x^4-3x^3-6x^2+3x+1\)câu này cx thế, bạn xem lại nha