\(x^2-6x+8\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2018

a) \(x^2-6x+8\)

\(=x^2-2\cdot x\cdot3+3^2-1\)

\(=\left(x-3\right)^2-1^2\)

\(=\left(x-3-1\right)\left(x-3+1\right)\)

\(=\left(x-4\right)\left(x-2\right)\)

Còn lại tương tự

a) \(x^2-6x+8=x^2-2x-4x+8\)                     

\(=\left(x^2-2x\right)-\left(4x-8\right)\)

=x(x-2)-4(x-2) = (x-2)(x-4)

8 tháng 7 2016

b, \(\left(x^2+x\right)^2+4x^2+4x-12=x^4+2x^3+x^2+4x^2+4x-12\)

                                                         \(=x^4+2x^3+5x^2+4x-12\)

                                                         \(=\left(x^4-x^3\right)+\left(3x^3-3x^2\right)+\left(8x^2-8x\right)+\left(12x-12\right)\)

                                                         \(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)

                                                          \(=\left(x^3+3x^2+8x+12\right)\left(x-1\right)\)

                                                          \(=\left[\left(x^3+2x^2\right)+\left(x^2+2x\right)+\left(6x+12\right)\right]\left(x-1\right)\)

                                                           \(=\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\left(x-1\right)\)

                                                            \(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)

c,        \(x^3+3x^2-4=\left(x^3+2x^2\right)+\left(x^2+2x\right)-\left(2x+4\right)\)

                                    \(=x^2\left(x+2\right)+x\left(x+2\right)-2\left(x+2\right)\)

                                     = \(\left(x^2+x-2\right)\left(x+2\right)\)

9 tháng 7 2016

a)\(x^5+x^4+1=x^5-\left(-x^3+x^3\right)+x^4+\left(x^2-x^2\right)+\left(x-x\right)+1\)

\(=x^5-x^3+x^2+x^4-x^2+x+x^3-x+1\)

\(=x^2\left(x^3-x+1\right)+x\left(x^3-x+1\right)+\left(x^3-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)

b,c có ng lm rồi

d)\(2x^4-3x^3-7x^2+6x+8\)

Ta thấy x=-1 là nghiệm của đa thức 

=>đa thức có 1 hạng tử là x+1

\(\Rightarrow\left(x+1\right)\left(2x^3-5x^2-2x+8\right)\)

\(\Rightarrow\left(x+1\right)\left[2x^3-x^2-4x-4x^2+2x+8\right]\)

\(\Rightarrow\left(x+1\right)\left[x\left(2x^2-x-4\right)-2\left(2x^2-x-4\right)\right]\)

\(\Rightarrow\left(x+1\right)\left(x-2\right)\left(2x^2-x-4\right)\)

phần còn lại bạn tự lo nhé

13 tháng 10 2019

\(e,-5x+x^2-14\)

\(=x^2+2x-7x-14\)

\(=x\left(x+2\right)-7\left(x+2\right)\)

\(=\left(x+2\right)\left(x-7\right)\)

\(f,x^3+8+6x\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+2x+4\right)+6x\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+8x+4\right)\)

\(g,15x^2-7xy-2y^2\)

\(=15x^2+3xy-10xy-2y^2\)

\(=3\left(5x+y\right)-2y\left(5x+y\right)\)

\(=\left(5x+y\right)\left(3-2y\right)\)

\(h,3x^2-16x+5\)

\(=3x^2-x-15x+5\)

\(=x\left(3x-1\right)+5\left(3x-1\right)\)

\(=\left(3x-1\right)\left(x+5\right)\)

13 tháng 10 2019

\(a,x^3+2x^2y+xy^2=x\left(x^2+2xy+y^2\right)\)

\(=x\left(x+y\right)^2\)

\(b,4x^2-9y^2+4x-6y\)

\(=4x^2+4x+1-\left(9y^2+6y+1\right)\)

\(=\left(2x+1\right)^2-\left(3y+1\right)^2\)

\(=\left(2x-3y\right)\left(2x+3y+2\right)\)

\(c,-x^2+5x+2xy-5y-y^2\)

\(=-\left(x^2-2xy+y^2\right)+5\left(x-y\right)\)

\(=-\left(x-y\right)^2+5\left(x-y\right)\)

\(=\left(x-y\right)\left(y-x+5\right)\)

\(d,x^2+4x-12\)

\(=x^2-2x+6x-12\)

\(=x\left(x-2\right)+6\left(x-2\right)\)

\(=\left(x-2\right)\left(x+6\right)\)

1) \(x^2+6x+8\)

\(=x^2+2x+4x+8\)

\(=x\left(x+2\right)+4\left(x+2\right)\)

\(=\left(x+4\right)\left(x+2\right)\)

2) \(x^2-5x-14\)

\(=x^2-7x+2x-14\)

\(=x\left(x-7\right)+2\left(x-7\right)\)

\(=\left(x-7\right)\left(x+2\right)\)

3) \(2x^2+5x+3\)

\(=2x^2+2x+3x+3\)

\(=2x\left(x+1\right)+3\left(x+1\right)\)

\(=\left(x+1\right)\left(2x+3\right)\)

4) \(x^2-x-12\)

\(=x^2-4x+3x-12\)

\(=x\left(x-4\right)+3\left(x-4\right)\)

\(=\left(x-4\right)\left(x+3\right)\)

12 tháng 10 2018

a)  \(4x^2-4x+3=4x^2-4x+1+2\)

\(=\left(2x-1\right)^2+2>0\)\(\forall x\)

=> ko phân tích thành nhân tử được

b)  \(9x^2+6x-8=9x^2+12x-6x-8\)

\(=3x\left(3x+4\right)-2\left(3x+4\right)=\left(3x-2\right)\left(3x+4\right)\)

c)  \(3x^2-8x+4=3x^2-6x-2x+4\)

\(=3x\left(x-2\right)-2\left(x-2\right)=\left(3x-2\right)\left(x-2\right)\)

12 tháng 10 2018

a/\(4x^2-4x+3\)

\(=4x^2-1x-3x+3\)

\(=4x\left(x-1\right)-3\left(x-1\right)\)

\(=\left(x-1\right)\left(4x-3\right)\)

b/\(9x^2+6x-8\)

\(=\text{(3x - 2)(3x + 4)}\)

c/\(3x^2-8x+4\)

\(\text{ =(3x^2 - 6x) - (2x - 4) }\)

\(\text{= 3x(x - 2) - 2(x - 2)}\)

\(\text{= (3x - 2)(x - 2)}\)

AH
Akai Haruma
Giáo viên
10 tháng 10 2018

1)

\(15x^3+29x^2-8x-12=(15x^3+30x^2)-(x^2+2x)-(6x+12)\)

\(=15x^2(x+2)-x(x+2)-6(x+2)\)

\(=(x+2)(15x^2-x-6)=(x+2)(15x^2-10x+9x-6)\)

\(=(x+2)[5x(3x-2)+3(3x-2)]\)

\(=(x+2)(3x-2)(5x+3)\)

AH
Akai Haruma
Giáo viên
10 tháng 10 2018

2)

\(x^3+4x^2-29x+24=(x^3-x^2)+(5x^2-5x)-(24x-24)\)

\(=x^2(x-1)+5x(x-1)-24(x-1)\)

\(=(x-1)(x^2+5x-24)\)

\(=(x-1)(x^2-3x+8x-24)\)

\(=(x-1)[x(x-3)+8(x-3)]=(x-1)(x-3)(x+8)\)

30 tháng 6 2017

Ta có : \(4x^2-3x-1\)

\(=4x^2-4x+x-1\)

\(=4x\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left(4x+1\right)\)

30 tháng 6 2017

Ta có : \(x^2-7x+12\)

\(=x^2-3x-4x+12\)

\(=x\left(x-3\right)-\left(4x-12\right)\)

\(=x\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x-4\right)\left(x-3\right)\)

18 tháng 8 2017

x+ 7x - 6=x2 . x + 7x - 22 + 2 = (x2 - 22) + (x+7x)+2=(x-2) . (x+2) + 8x + 2

x3 - 5x + 8x - 4=x2 . x -5x + 8x -22 = (x2 - 22) . (x -5x + 8x )=(x-2) . (x+2) . 4x

x3 - 9x2 + 6x + 16=x2 . x - 9x2 + 6x + 16 = (x- 9x2) . (x+6x) + 16=(x-9x) . (x+9x) . 7x + 16

k mk nha

2 tháng 11 2016

a) (x2-4x+3)(x2-10x+24)+8=((x2-x)-(3x-3))((x2-6x)-(4x-24))+8

=(x(x-1)-3(x-1))(x(x-6)-4(x-6))+8=(x-1)(x-3)(x-4)(x-6)+8=((x-1)(x-6))(x-3)(x-4))+8

=(x2-7x+6)(x2-7x+12)+8

Đặt x2-7x+6=a

Ta có : a(a+6)+8=a2+6a+8=(a+2)(a+4)=(x2-7x+8)(x2-7x+10)=(x2-7x+8)(x-5)(x-2)

b) Tương tự như câu a kết quả là (x-3)(x3+9x2+21x+9)

c) x4+x3+6x2+3x+9=(x4+x3+3x2)+(3x2+3x+9)=x2(x2+x+3)+3(x2+x+3)=(x2+x+3)(x2+2)

27 tháng 10 2021

helpppppp