\(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2016

a) \(x^3-\frac{1}{4}x=x\left(x^2-\frac{1}{4}\right)=x\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)\)

b) \(\left(2x-1\right)^2-\left(x+3\right)^2=\left(2x-1-x-3\right)\left(2x-1+x+3\right)=\left(x-4\right)\left(3x+2\right)\)

c) \(x^2-y^2-2y-1=x^2-\left(y^2+2y+1\right)=x^2-\left(y+1\right)^2=\left(x-y-1\right)\left(x+y+1\right)\)

d) \(x^2\left(x-3\right)+12-4x=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-2^2\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

10 tháng 7 2016

Phép tính b):
Đặt 2x - 1 = a  ;  x + 3 = b. Từ đầu bài suy ra:
\(\left(2x-1\right)^2-\left(x+3\right)^2\Rightarrow a^2-b^2\)
\(\Rightarrow a^2-b^2-\left(ab-ab\right)\Rightarrow\left(a^2-ab\right)-\left(b^2-ab\right)\)
\(\Rightarrow a\left(a-b\right)-b\left(b-a\right)\Rightarrow a\left(a-b\right)+b\left(a-b\right)\)
\(\Rightarrow\left(a+b\right)\left(a-b\right)\)
Thế lại vào ta có:
\(\orbr{\begin{cases}a+b=\left(2x-1\right)+\left(x+3\right)=\left(2x+x\right)-\left(1-3\right)=3x+2\\a-b=\left(2x-1\right)-\left(x-3\right)=\left(2x-x\right)-\left(1-3\right)=x+2\end{cases}}\)
\(\Rightarrow\left(a+b\right)\left(a-b\right)=\left(3x+2\right)\left(x+2\right)\)

11 tháng 7 2016

a) \(x^2\left(x-3\right)+12-4x=x^2\left(x-3\right)-4x+12\)

\(=x^2\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-4\right)\)

\(=\left(x-3\right)\left(x^2-2^2\right)\)

\(=\left(x+3\right)\left(x-2\right)\left(x+2\right)\)

b)\(x^2-4+\left(x-2\right)^2=x^2-2^2+\left(x-2\right)^2\)

\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\)

\(=\left(x-2\right)\left(x+2+x-2\right)\)

\(=\left(x-2\right)2x\)

c)\(x^3-4x^2-12x+27=x^3+3x^2-7x^2-21x+9x+27\)

\(=x^2\left(x+3\right)-7x\left(x+3\right)+9\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-7x+9\right)\)

\(=\left(x+3\right)\left(x^2-7x+9\right)\)

11 tháng 7 2016

a) => x2.(x-3)-4(x-3)=(x-3)(x2-4)=(x-3)(x-2)(x+2)

b) => (x+2)(x-2)+(x-2)2=(x-2)(x+2+x-2)=2x(x-2)

c) => x3+27-(4x2+12x)=(x+3)(x2-3x+3)-4x(x+3)=(x+3)(x2-3x+3-4x)=(x-3)(x2-7x+3)

11 tháng 7 2016

1) \(x^2-2x-4y^2-4y\)

\(=\left[x^2-\left(2y\right)^2\right]-\left(2x+4y\right)\)

\(=\left(x+2y\right)\left(x-2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

2) \(x^4+2x^3-4x-4\)

\(=\left(x^4-4\right)+\left(2x^3-4x\right)\)

\(=\left(x^2+2\right)\left(x^2-2\right)+2x\left(x^2-2\right)\)

\(=\left(x^2-2\right)\left(x^2+2+2x\right)\)

3) \(x^2\left(1-x^2\right)-4x+4x^2\)

\(=x^2\left(1+x\right)\left(1-x\right)+4x\left(x-1\right)\)

\(=x^2\left(1+x\right)\left(1-x\right)-4x\left(1-x\right)\)

\(=\left(1-x\right)\left[x^2\left(1+x\right)-4x\right]\)

11 tháng 7 2016

1/ \(3x^2+6x+3-3y^2=3x^2+3x+3x+3-3y^2\)

\(=3\left(x^2+2x+1-y^2\right)\)

\(=3\left[\left(x^2+2x+1\right)-y^2\right]\)

\(=3\left[\left(x+1\right)^2-y^2\right]\)

\(=3\left(x+1-y\right)\left(x+1+y\right)\)

2/ \(25-x^2-y^2+2xy=5^2-\left(x^2+y^2-2xy\right)\)

\(=5^2-\left(x-y\right)^2\)

\(=\left[5-\left(x-y\right)\right]\left(5+x+y\right)\)

\(=\left(5-x+y\right)\left(5+x+y\right)\)

3/ \(3x-3y-x^2+2xy-y^2=3\left(x-y\right)-\left(x^2-2xy+y^2\right)\)

\(=3\left(x-y\right)-\left(x-y\right)^2\)

\(=\left(x-y\right)\left[3-\left(x-y\right)\right]\)

\(=\left(x-y\right)\left(3-x+y\right)\)

10 tháng 7 2016

1) \(25-x^2-y^2+2xy=5^2-\left(x^2-2xy+y^2\right)=5^2-\left(x-y\right)^2\)\(=\left(5-x+y\right)\left(5+x-y\right)\)

2)  \(3x-3y-x^2+2xy-y^2\)\(=3\left(x-y\right)-\left(x^2-2xy+y^2\right)\)\(=3\left(x-y\right)-\left(x-y\right)^2\)\(=\left(x-y\right)\left(3-x+y\right)\)

10 tháng 7 2016

1) \(25-x^2-y^2+2xy\)

\(=5^2-\left(x^2+y^2-2xy\right)\)

\(=5^2-\left(x-y\right)^2\)

\(=\left(x-y-5\right)\left(x-y+5\right)\)

2) \(3x-3y-x^2+2xy-y^2\)

\(=3\left(x-y\right)-\left(x^2-2xy+y^2\right)\)

\(=3\left(x-y\right)-\left(x-y\right)\left(x-y\right)\)

\(=\left(3-x+y\right)\left(x-y\right)\)

9 tháng 7 2016

1)\(x^4+2x^3+x^2\)

=\(\left(x^4+x^3\right)+\left(x^3+x^2\right)\)đật nhân tử chung ra

=\(x^2\left(x+1\right)^2\)

2) pt => \(\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

=\(\left(x+y\right)^3-\left(x+y\right)\)

=\(\left(x+y\right)\left(\left(x+y\right)^2+1\right)\)

3)chia tất cả cho 5 pt => \(x^2-2xy+y^2-4x^2\)

=\(\left(x+y\right)^2-4z^2\)

=\(\left(x+y+2z\right)\left(x+y-2z\right)\)

4)pt => \(2\left(x-y\right)-\left(x^2-2xy+y^2\right)\)

=\(2\left(x-y\right)-\left(x-y\right)^2\)

=\(\left(x-y\right)\left(2-x+y\right)\)

k chi nha

30 tháng 3 2020

\(ĐKXĐ:x\ne\pm\frac{3}{2};x\ne1;x\ne0\)

\(A=\left(\frac{2+3x}{2-3x}-\frac{36x^2}{9x^2-4}-\frac{2-3x}{2+3x}\right):\frac{x^2-x}{2x^2-3x^3}\)

\(=\left[\frac{\left(2+3x\right)^2}{\left(2+3x\right)\left(2-3x\right)}+\frac{36x^2}{\left(2-3x\right)\left(2+3x\right)}-\frac{\left(2-3x\right)^2}{\left(2-3x\right)\left(2+3x\right)}\right]:\frac{x\left(x-1\right)}{x^2\left(2-3x\right)}\)

\(=\frac{4+12x+9x^2+36x^2-4+12x-9x^2}{\left(2+3x\right)\left(2-3x\right)}\cdot\frac{x\left(2-3x\right)}{x-1}\)

\(=\frac{36x^2+24x}{\left(2+3x\right)\left(2-3x\right)}\cdot\frac{x\left(2-3x\right)}{x-1}\)

\(=\frac{12x\left(3x+2\right)}{2+3x}\cdot\frac{x}{x-1}\)

\(=\frac{12x^2}{x-1}\)

30 tháng 3 2020

Để A nguyên dương hay \(\frac{12x^2}{x-1}\) nguyên dương

Mà \(12x^2\ge0\Rightarrow x-1>0\Rightarrow x>1\)

Vậy để A nguyên dương thì x là số nguyên dương lớn hơn 1.

11 tháng 7 2016

\(=x\left(x^2-2x+1-y^2\right)\)

\(=x\left(\left(x-1\right)^2-y^2\right)\)

\(=x\left(x-1-y\right)\left(x-1+y\right)\)

11 tháng 7 2016

bài này bn hoc qt đung rui, tui làm nhé

1)= x(x2 -2x +1 - y) = x((x-1)2 - y)

24 tháng 6 2016

a/ x2 + 6x + 9 = (x + 3)2 = (x + 3)(x + 3)

b/ 10x - 25 - x2 = -x2 + 10x - 25 = -(x2 -10x + 25) = -(x - 5)2 = -(x - 5)(x - 5)

c/ \(8x^3+\frac{1}{8}=\left(2x\right)^3+\left(\frac{1}{2}\right)^3=\left(2x+\frac{1}{2}\right)\left(4x^2-x+\frac{1}{4}\right)\)