K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2017

Ta có:

\(A=a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2\)

\(=a^4+b^4+c^4+2a^2b^2-2a^2c^2-2b^2c^2\) \(-4a^2b^2\)

\(=\left(a^2+b^2-c^2\right)^2-4a^2b^2\) \(=\left(a^2+b^2-c^2\right)^2-\left(2ab\right)^2\)

\(=\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)\)

\(=\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]\)

\(=\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)\)

24 tháng 8 2016

2a2b2+2a2c2+2b2c2-a4-b4-c4

=4a2b2-(a4+2a2b2+b4)+(2b2c2+2a2c2)-c4

=2(ab)2-(a+b)2+2c2(a2+b2)+c4

=2(ab)2-[(a+b)2-2c2(a2+b2)+c4]

=2(ab)2-(b2+a2-c2)2

=[(a+b)2-c2][-(a-b)2+c2]

=(a+b-c)(a+b+c)(c-a+b)(a+c-b)

 

25 tháng 8 2016

\(2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4\)

\(=4a^2b^2-\left(a^4+2a^2b^2+b^4\right)+\left(2b^2c^2+2a^2c^2\right)-c^4\)

\(=2\left(ab\right)^2-\left(a+b\right)^2+2c^2\left(a^2+b^2\right)+c^4\)

\(=2\left(ab\right)^2-\left[\left(a+b\right)^2-2c^2\left(a^2+b^2\right)+c^4\right]\\ =2\left(ab\right)^2-\left(b^2+a^2-c^2\right)^2\)

=\(\left[\left(a+b\right)^2-c^2\right]\left[-\left(a-b\right)^2+c^2\right]\\ =\left(a+b+c\right)\left(a+b+c\right)\left(c-a+b\right)\left(a+c-b\right)\)

8 tháng 9 2019

\(x^2-y^2+4x+4\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2+y\right)\left(x+2-y\right)\)

\(4x^2-y^2+8\left(y-2\right)\)

\(=4x^2-\left(y^2-8y+16\right)\)

\(=4x^2-\left(y-4\right)^2\)

\(=\left(2x+y-4\right)\left(2x-y+4\right)\)

11 tháng 10 2019

a ) 2a2b2 + 2b2c2 + 2a2c2 - a4 - b4 - c4

= 4a2b- 2a2b2 + 2b2c2 + 2a2c2 - a4 - b4 - c4

= 4a2b2 - ( a4 + 2a2b2 + b4 ) + ( 2b2c + 2a2c2 ) - c4

= 4a2b2 - [ ( a+ b2 ) - 2.c2. ( b2 + a2 ) + c4 ]

= ( 2ab )2 - ( a2 + b2 - c2 )

= ( 2ab - a2 - b2 + c2 )( 2ab + a2 + b2 - c2 )

= [ c- ( a- 2ab + b2 ) ] . [ (a2 + 2ab + b2 ) - c2 ]

= [ c2 - ( a - b )2 ] . [ ( a + b )2 - c2 ]

= ( c - a + b )( c + a - b )( a + b - c )( a + b + c )

b ) x- 10x + 24

= ( x- 10x + 25 ) - 1

= ( x - 5 )2 - 12

= ( x - 5 - 1 )( x - 5 + 1 )

= ( x - 6 )( x - 4 )

28 tháng 7 2016

1.  x^3-19x-30 
=x^3-25x+6x-30 
=x(x^2-25)+6(x-5) 
=x(x+5)(x-5)+6(x-5) 
=(x-5)(x^2+5x+6) 
=(x-5)(x^2+2x+3x+6) 
=(x-5)[x(x+2)+3(x+2)] 
=(x-5)(x+2)(x+3)

28 tháng 7 2016

 2.

a + b + c = 0 
<=> (a + b + c)² = 0 
<=> a² + b² + c² + 2(ab + bc + ca) = 0 
<=> a² + b² + c² = -2(ab + bc + ca) ------------(1) 

CẦn chứng minh: 

2(a^4 + b^4 + c^4) = (a² + b² + c²)² 

<=> 2(a^4 + b^4 + c^4) = a^4 + b^4 + c^4 + 2(a²b² + b²c² + c²a²) 

<=> a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²) 

<=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²) ---(cộng 2 vế cho 2(a²b² + b²c² + c²a²) ) 

<=> [-2(ab + bc + ca)]² = 4(a²b² + b²c² + c²a²) ----(do (1)) 

<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²) 

<=> 8.(ab²c + bc²a + a²bc) = 0 

<=> 8abc.(a + b + c) = 0 

<=> 0 = 0 (đúng), Vì a + b + c = 0 

=> Đpcm