K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2019

= (a3x - x) - ( ab - b ) = x (a3 - 1 ) - b(a - 1 )  = x (a - 1) (a2 + a + 1) - b(a - 1 )  = (a - 1) ( a2x + ax + x - b)

21 tháng 4 2017

a) Ta thay x=1 vào đa thức P(x) có:

P(1)= 1^3-3x1+2=-2+2=0

==> 1 là nghiệm của đa thức P(x)

Vậy 1 là nghiệm của đa thức P(x) (đbđcm)

b) bạn phân tích ra rồi đặt đa thức đó bằng 0 là ok

21 tháng 4 2017

Ta có : P(1) = 1- 3.1 + 2 = -2 + 2 = 0

Vậy x = 1 là 1 nghiệm của đa thức P(x)

21 tháng 4 2017

a, Thay x=1 vào M (bạn tự làm tiếp nhe)

b,Ta có P(x)=x^3-3x+2

                   =x^3-x^2+x^2-x-2x+2

                   =x^2(x-1)+x(x-1)-2(x-1)

                   =(x-1)(x^2+x-2)

                   =(x-1)(x-1)(x+2)

Do đo x=-2 là nghiệm còn lại của phương trình

          mình chỉ làm xơ wa thôi nhá!

\(a^4-a^3-a^2+a\)

\(=a^3\left(a-1\right)-a\left(a-1\right)\)

\(=\left(a-1\right)\left(a^3-a\right)\)

31 tháng 7 2016

Bài 3: 

\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\) 

\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\) 

\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\) 

Thay x = 3 vào đa thức, ta có:

\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\) 

\(f\left(3\right)=240-28+27=239\)

Vậy đa thức trên bằng 239 tại x = 3

Thay x = -3 vào đa thức. ta có:

\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)

\(f\left(-3\right)=-240+28+27=-185\)

31 tháng 7 2016

Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)

\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)

\(f\left(x\right)=2x^6+x^2+3x^4\)

Thay x=1 vào đa thức, ta có:

\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)

Đa thức trên bằng 6 tại x =1

Thay x = - 1 vào đa thức, ta có:

\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)

Đa thức trên có nghiệm = 0

30 tháng 5 2019

a) \(P\left(x\right)=3x^2-5x^3+x+2x^3-x-4+3x^3+x^4+7\)

\(\Rightarrow P\left(x\right)=3x^2+\left(3x^3+2x^3-5x^3\right)+\left(x-x\right)+\left(7-4\right)\)

\(\Rightarrow P\left(x\right)=3x^2+0+0+3\)

\(\Rightarrow P\left(x\right)=3x^2+3\)

b) Vì \(3x^2\ge0\) nên \(P\left(x\right)=3x^2+3\ge3\)

Vậy đa thức P(x) vô nghiệm

30 tháng 5 2019

Mình quên x4  nên P(x) = 3x2 + x4 + 3

Lý luận tương tự \(P\left(x\right)\ge3\) nên P(x) vô nghiệm

21 tháng 6 2020

Giúp tớ đi các cậu ơi, mai phải nộp rồi

21 tháng 6 2020

A(x) = x2 + 5x4 - 3x3 + x2 - 4x4 + 3x3 - x + 5

       = ( 5x4 - 4x4 ) + ( 3x3 - 3x3 ) + ( x2 + x2 ) - x + 5

       = x4 + 2x2 - x + 5

B(x) = x - 5x3 - x2 - x4 + 5x3 - x2 - 3x + 1

        = -x4 + ( 5x3 - 5x3 ) + ( -x2 - x2 ) + ( -3x + x ) + 1

        = -x4 - 2x2 - 2x + 1

M(x) = A(x) + B(x) 

         = x4 + 2x2 - x + 5 + ( -x4 - 2x2 - 2x + 1 )

         =  x4 + 2x2 - x + 5 - x4 - 2x2 - 2x + 1

         = -3x + 6

N(x) = A(x) - B(x) 

        = x4 + 2x2 - x + 5 - ( -x4 - 2x2 - 2x + 1 )

        = x4 + 2x2 - x + 5 + x4 + 2x2 + 2x - 1

        = 2x4 + 4x2 + x + 4

M(x) = 0 <=> -3x + 6 = 0

              <=> -3x = -6

              <=> x = 2

Vậy nghiệm của M(x) là 2

10 tháng 4 2020

dsssws