Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(x^2yz+4zyx+4yz\)
\(=yz\left(x^2+4x+4\right)\)
\(=yz\left(x+2\right)^2\)
b) \(5x^4-3x^3y-45x^2y^2+27xy^3\)
\(=x\left(5x^3-3x^2y-45xy^2+27y^3\right)\)

x4-3x3-x+3 = (x4-3x3)-(x-3) = x3(x-3)-(x-3) = (x-3)(x3-1) = (x-3)(x-1)(x2+x+1)
3x+3y-x2-2xy-y2 = (3x+3y)-(x2+2xy+y2) = 3(x+y)-(x+y)2 = (x+y)( 3-x-y)
x2-x-12 = x(x-1)-12

Câu 2 nha
\(a,x^4+2x^3+x^2\)
\(=x^2\left(x^2+2x+1\right)\)
\(=x^2\left(x+1\right)^2\)
\(c,x^2-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)

1) \(\left(3x^2-3y^2\right)-\left(12x-12y\right)\)
\(=3xy\left(x-y\right)-12\left(x-y\right)\)
\(=\left(3xy-12\right)\left(x-y\right)\)
2) \(4x^3+4xy^2+8x^2y-16x\)
\(=\left(4x^3-16x\right)+\left(4xy^2+8x^2y\right)\)
\(=4x\left(x^2-4\right)+4xy\left(y+2x\right)\)
Ta có : 3x2 - 3y2 - 12x + 12y
= (3x2 - 3y2) - (12x - 12y)
= 3(x2 - y2) - 12(x - y)
= 3(x - y)(x + y) - 4.3.(x - y)
= 3(x - y)(x + y - 4)

\(3y^3+6xy^2+3x^2y=3y\left(y^2+2xy+x^2\right)=3y\left(x+y\right)^2\)
\(x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
\(x^3+3x^2-3x-1=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)=\left(x-1\right)\left(x^2+x+1+3x\right)\)
\(=\left(x-1\right)\left(x^2+4x+1\right)\)
Tham khảo nhé~

Ấn nhầm :v
a) \(4x^4-21x^2y^2+y^4\)
\(=\left(2x^2\right)^2-2\cdot2x^2\cdot y^2+y^2-25x^2y^2\)
\(=\left(2x^2-y^2\right)^2-\left(5xy\right)^2\)
\(=\left(2x^2-5xy-y^2\right)\left(2x^2+5xy-y^2\right)\)
b) \(x^5-5x^3+4x\)
\(=x^5-4x^3-x^3+4x\)
\(=x^3\left(x^2-4\right)-x\left(x^2-4\right)\)
\(=\left(x^2-4\right)\left(x^3-x\right)\)
\(=x\left(x-2\right)\left(x+2\right)\left(x^2-1\right)\)
\(=x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)
a: Ta có: \(10x^4-27x^3y-110x^2y^2-27xy^3+10y^4\)
\(=10x^4+20x^2y^2+10y^4-27xy\left(x^2+y^2\right)-130x^2y^2\)
\(=10\left(x^2+y^2\right)^2-27xy\left(x^2+y^2\right)-130x^2y^2\)
\(=10\left(x^2+y^2\right)^2-52xy\left(x^2+y^2\right)+25xy\left(x^2+y^2\right)-130x^2y^2\)
\(=2\left(x^2+y^2\right)\left(5x^2+5y^2-26xy\right)+5xy\left(5x^2+5y^2-26xy\right)\)
\(=\left(5x^2-26xy+5y^2\right)\left(2x^2+5xy+2y^2\right)\)
\(=\left(5x^2-25xy-xy+5y^2\right)\left(2x^2+4xy+xy+2y^2\right)\)
\(=\left\lbrack5x\left(x-5y\right)-y\left(x-5y\right)\right\rbrack\left\lbrack2x\left(x+2y\right)+y\left(x+2y\right)\right\rbrack\)
=(5x-y)(x-5y)(2x+y)(x+2y)
b: \(x^5-4x^4+3x^3+3x^2-4x+1\)
\(=x^5+x^4-5x^4-5x^3+8x^3+8x^2-5x^2-5x+x+1\)
\(=\left(x+1\right)\left(x^4-5x^3+8x^2-5x+1\right)\)
\(=\left(x+1\right)\left(x^4-x^3-4x^3+4x^2+4x^2-4x-x+1\right)\)
\(=\left(x+1\right)\left(x-1\right)\left(x^3-4x^2+4x-1\right)\)
\(=\left(x+1\right)\left(x-1\right)\left\lbrack\left(x^3-x^2\right)-3x^2+3x+x-1\right\rbrack\)
\(=\left(x+1\right)\left(x-1\right)\cdot\left(x-1\right)\left(x^2-3x+1\right)=\left(x+1\right)\left(x-1\right)^2\cdot\left(x^2-3x+1\right)\)