Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 - 16 - 4xy + 4y2
= ( x2 - 4xy + 4y2 ) - 16
= ( x - 2y )2 - 42
= ( x - 2y - 4 )( x - 2y + 4 )
b) x5 - x4 + x3 - x2
= x2( x3 - x2 + x - 1 )
= x2[ x2( x - 1 ) + ( x - 1 ) ]
= x2( x - 1 )( x2 + 1 )
c) x( x + 4 )( x + 6 )( x + 10 ) + 128 < mình nghĩ là nên sửa đề như này :]>
= [ x( x + 10 ) ][ ( x + 4 )( x + 6 ) ] + 128
= ( x2 + 10x )( x2 + 10x + 24 ) + 128
Đặt t = x2 + 10x
bthuc <=> t( t + 24 ) + 128
= t2 + 24t + 128
= t2 + 16t + 8t + 128
= t( t + 16 ) + 8( t + 16 )
= ( t + 16 )( t + 8 )
= ( x2 + 10x + 16 )( x2 + 10x + 8 )
= ( x2 + 2x + 8x + 16 )( x2 + 10x + 8 )
= [ x( x + 2 ) + 8( x + 2 ) ]( x2 + 10x + 8 )
= ( x + 2 )( x + 8 )( x2 + 10x + 8 )
cảm ơn bạn câu c mình chép nhầm nó là 128 đó
a) Đặt t = x2
bthuc <=> t2 - 7t + 16
Từ đây ta không thể phân tích được :)
b) x3 - 2x2 + 5x - 4
= x3 - x2 - x2 + x + 4x - 4
= x2( x - 1 ) - x( x - 1 ) + 4( x - 1 )
= ( x - 1 )( x2 - x + 4 )
c) x3 - 2x2 + x - 3 ( phân tích hổng ra :)) )
d) 3x3 - 4x2 + 12x - 4 ( phân tích hổng ra p2 :)) )
e) 6x3 + x2 + x + 1
= 6x3 + 3x2 - 2x2 - x + 2x + 1
= 3x2( 2x + 1 ) - x( 2x - 1 ) + ( 2x + 1 )
= ( 2x + 1 )( 3x2 - x + 1 )
f) 4x3 + 6x2 + 4x + 1
= 4x3 + 2x2 + 4x2 + 2x + 2x + 1
= 2x2( 2x + 1 ) + 2x( 2x + 1 ) + ( 2x + 1 )
= ( 2x + 1 )( 2x2 + 2x + 1 )
a) 16(4x+5)2 - 25(2x+2)2
\(=\left[4\left(4x+5\right)\right]^2-\left[5\left(2x+2\right)\right]^2\)
\(=\left[4\left(4x+5\right)+5\left(2x+2\right)\right]\left[4\left(4x+5\right)-5\left(2x+2\right)\right]\)
\(=\left(16x+20+10x+10\right)\left(16x+20-10x-10\right)\)
\(=\left(26x+30\right)\left(6x+10\right)\)
\(b,\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)
\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-2y+1\right)\)
\(=\left(3x+2y+3\right)\left(-x-3y+5\right)\)
\(c,\left(x+1\right)^4-\left(x-1\right)^4\)
\(=\left(x+1\right)^{2^2}-\left(x-1\right)^{2^2}\)
\(=\left[\left(x+1\right)^2+\left(x-1\right)^2\right]\left[\left(x+1\right)^2-\left(x-1\right)^2\right]\)
\(=\left(x^2+2x+1+x^2-2x+1\right)\left[\left(x+1+x-1\right)\left(x+1-x+1\right)\right]\)
\(=\left(2x^2+2\right)2x.2\)
\(=4x.2\left(x^2+1\right)\)
\(=8x\left(x^2+1\right)\)
\(b.x^4+4x^2-5=x^4-x^2+5x^2-5\)
\(=x^2\left(x^2-1\right)+5\left(x^2-1\right)\)
\(=\left(x^2+5\right)\left(x^2-1\right)\)
\(=\left(x^2+5\right)\left(x-1\right)\left(x+1\right)\)
\(c.x^3-19x-30=x^3-25x+6x-30\)
\(=x\left(x-5\right)\left(x+5\right)+6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2+5x+6\right)\)
\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)
\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\ = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\ = {a^2}{b^2} + 1 + {a^2} + {b^2}\\ = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\ = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\ = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\ = {x^3} + 2{x^2} + x + x + 1\\ = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\ = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\ = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\ = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\ = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\ = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\ = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\ = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\ = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\ = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\ = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\ = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\ = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array} |
a) x3 + 2x - 3
=x3+x2+3x-x2+x+3
=x(x2+x+3)-1(x2+x+3)
=(x-1)(x2+x+3)
b) x3 - x2 + x + 3
=x3-2x2+3x+x2-2x+3
=x(x2-2x+3)+1(x2-2x+3)
=(x+1)(x2-2x+3)
c) 3x3 - 4x2 + 13x - 4
=3x3-3x2+12-x2-x+4
=3x(x2-x+4)-1(x2-x+4)
=(3x-1)(x2-x+4)
d) 6x3 + x2 + x + 1
=6x3-2x2+2x+3x2-x+1
=2x(3x2-x+1)+1(3x2-x+1)
=(2x+1)(3x2-x+1)
e)bạn phân tích tương tự nhé mk cho đáp án để bạn đổi chiếu nè
=(2x+1)(2x2+2x+1)
\(3x\left(x-5\right)-x\left(4+3x\right)=43\)
\(\Leftrightarrow3x^2-15x-4x-3x^2=43\)
\(\Leftrightarrow-19x=43\)
\(\Leftrightarrow x=\frac{-43}{19}\)
b: \(=x^3-25x+6x-30=\left(x-5\right)\left(x^2+5x+6\right)\)
\(=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)
c: \(=x^3-x-6x-6=x\left(x-1\right)\left(x+1\right)-6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x-6\right)\)
\(=\left(x+1\right)\left(x-3\right)\left(x+2\right)\)
d: \(=x^4+4y^4+4x^2y^2-4x^2y^2\)
\(=\left(x^2+2y^2\right)^2-4x^2y^2\)
\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
e: \(=\left(x^2+x\right)^2+3\left(x^2+x\right)-10\)
\(=\left(x^2+x+5\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)