Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2-xy+9x-9y\)
\(=x\left(x-y\right)+9\left(x-y\right)\)
\(=\left(x+9\right)\left(x-y\right)\)
Bài 4.
a) 3xy2 - 45x2y = 3xy( y - 15x )
b) 25y2 - 4x2 + 4x - 1
= 25y2 - ( 4x2 - 4x + 1 )
= ( 5y )2 - ( 2x - 1 )2
= ( 5y - 2x + 1 )( 5y + 2x - 1 )
c) x2 - 5x + xy - 5y
= x( x - 5 ) + y( x - 5 )
= ( x - 5 )( x + y )
d) x2 - 8x - 33
= x2 + 3x - 11x - 33
= x( x + 3 ) - 11( x + 3 )
= ( x + 3 )( x - 11 )
Bài 5.
a) A = ( x - 2 )3 - x2( x - 4 ) + 8
= x3 - 6x2 + 12x - 8 - x3 + 4x2 + 8
= -2x2 + 12x
B = ( x2 - 6x + 9 ) : ( x - 3 ) - x( x + 7 ) - 9
= ( x - 3 )2 : ( x - 3 ) - x2 - 7x - 9
= x - 3 - x2 - 7x - 9
= -x2 - 6x - 12
b) Với x = -1 thì A = -2.(-1)2 + 12.(-1) = -2 - 12 = -14
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
d) \(x^2-y^2-2x+2y\)
\(=\left(x^2-2x+1\right)-\left(y^2-2y+1\right)\)
\(=\left(x-1\right)^2-\left(y-1\right)^2\)
\(=\left(x-1-y+1\right)\left(x-1+y-1\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
\(4xy^2-12x^2y+8xy\)
\(=4xy\left(y-3x+2\right)\)
\(3x^2-6xy+3y^2-12z^2\)
\(=3.\left(x^2-2xy+y^2-4z^2\right)\)
\(=3.\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=3.\left(x-y-2z\right)\left(x-y+2z\right)\)
\(x^4y^4+4=\left[\left(x^2y^2\right)^2+2..x^2y^2.2+2^2\right]-\left(2xy\right)^2\)
\(=\left(x^2y^2+2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2y^2+2-2xy\right)\left(x^2y^2+2+2xy\right)\)
a) = (x + 3)2 - y2 = (x + 3 - y)(x + 3 + y)
b) = x2(x - 3) -4(x - 3) = (x - 3)(x2 - 4) = (x - 3)(x - 2)(x + 2)
c) = 3x(x - y) - 5(x - y) = (x - y)(3x - y)
d) Nhầm đề. tui sửa lại x3 + y3 + 2x2 - 2xy + 2y2
= x3 + y3 + 2(x2 - xy + y2) = (x + y)(x2 - xy + y2) + 2(x2 - xy + y2) = (x2 - xy + y2)(x + y + 2)
e) = x4 - x3 - x3 + x2 - x2 + x + x - 1 = x3(x - 1) - x2(x - 1) - x(x - 1) + x - 1 = (x - 1)(x3 - x2 - x + 1) = (x - 1)(x - 1)(x2 - 1) = (x - 1)3(x + 1)
f) = x3 - 3x2 - x2 + 3x + 9x - 27 = x2(x - 3) - x(x - 3) + 9(x - 3) = (x-3)(x2 - x + 9)
g) chắc là 3xyz
= x2y + xy2 + y2z + yz2 + x2z + xz2 + 3xyz = x2y + xy2 + xyz + y2z + yz2 + xyz + x2z + xz2 + xyz = (x + y + z)(xy + yz + xz)
h) = 23 -(3x)3 = (2 - 3x)(4 + 6x + 9x2)
i) = (x + y - x + y)(x + y + x - y) = 2y*2x = 4xy
k) = (x3 - y3)(x3 + y3) = (x - y)(x2 + xy +y2)(x + y)(x2 - xy +y2).
a) \(x^3+x^2y-x^2z-xyz\)
\(=x^2\left(x+y\right)-xz\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xz\right)\)
\(=x\left(x+y\right)\left(x-z\right)\)
b) \(x^2-6x+9-9y^2\)
\(=\left(x^2-2\cdot x\cdot3+3^2\right)-\left(3y\right)^2\)
\(=\left(x-3\right)^2-\left(3y\right)^2\)
\(=\left(x-3-3y\right)\left(x-3+3y\right)\)
c) \(x^2+9x+20\)
\(=x^2+5x+4x+20\)
\(=x\left(x+5\right)+4\left(x+5\right)\)
\(=\left(x+5\right)\left(x+4\right)\)
d) \(x^4+4\)
\(=\left(x^2\right)^2+2\cdot x^2\cdot2+4-2\cdot x^2\cdot2\)
\(=\left(x^2+2\right)-\left(2x\right)^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
a/\(x^3+x^2y-x^2z-xyz\)
\(=\left(x^3-x^2y\right)+\left(x^2y-xyz\right)\)
\(=x^2\left(x-z\right)+xy\left(x-z\right)\)
\(=\left(x-z\right)\left(x^2+xy\right)\)
b/\(x^2-6x+9-9y^2\)
\(=\left(x^2-6x+9\right)-9y^2\)
\(=\left(x-3\right)^2-\left(3y\right)^2\)
\(=\left(x-3+3y\right)\left(x-3-3y\right)\)
c/\(x^2+9x+20\)
\(=x^2+4x+5x+20\)
\(=\left(x^2+4x\right)+\left(5x+20\right)\)
\(=x\left(x+4\right)+5\left(x+4\right)\)
\(=\left(x+5\right)\left(x+4\right)\)
d/\(x^4+4\)
\(=x^4+4x^2-4x^2+4\)
\(=\left(x^2+4x^2+4\right)-4x^2\)
\(=\left(x+2\right)^2-\left(2x\right)^2\)
\(=\left(x+2-2x\right)\left(x+2+2x\right)\)