Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Đáp án}`
`\downarrow`
`a,`
`A(x)+B(x)=`\(\left(3x^4-\dfrac{3}{4}x^3+2x^2-3\right)+8x^4+\dfrac{1}{5}x^3-9x+\dfrac{2}{5}\)
`= 3x^4-3/4x^3+2x^2-3+8x^4+1/5x^3-9x+2/5`
`= (3x^4+8x^4)+(-3/4x^3+1/5x^3)+2x^2-9x+(-3+2/5)`
`= 11x^4-11/20x^3+2x^2-9x-13/5`
`b,`
`A(x)-B(x)=`\(3x^4-\dfrac{3}{4}x^3+2x^2-3-\left(8x^4+\dfrac{1}{5}x^3-9x+\dfrac{2}{5}\right)\)
`=3x^4-3/4x^3+2x^2-3-8x^4-1/5x^3+9x-2/5`
`= (3x^4-8x^4)+(-3/4x^3-1/5x^3)+2x^2+9x+(-3-2/5)`
`= -5x^4 -19/20x^3+2x^2+9x-17/5`
`c,`
`B(x)-A(x)=`\(8x^4+\dfrac{1}{5}x^3-9x+\dfrac{2}{5}-\left(3x^4-\dfrac{3}{4}x^3+2x^2-3\right)\)
`= 8x^4+1/5x^3-9x+2/5 - 3x^4+3/4x^3-2x^2+3`
`= (8x^4-3x^4)+(1/5x^3-3/4x^3)-2x^2-9x+(2/5+3)`
`= 5x^4 + 19/20x^3 -2x^2 -9x+17/5`
a: A(x)+B(x)=11x^4-11/20x^3+2x^2-9x-13/5
b: A(x)-B(x)=-5x^4-19/20x^3+2x^2+9x-17/5
c: B(x)-A(x)=5x^4+19/20x^3-2x^2-9x+17/5
Bài làm:
a) \(2x^2+7x+5=\left(2x^2+2x\right)+\left(5x+5\right)=2x\left(x+1\right)+5\left(x+1\right)\)
\(=\left(2x+5\right)\left(x+1\right)\)
b) \(x^3-2x-4=\left(x^3-2x^2\right)+\left(2x^2-4x\right)+\left(2x-4\right)\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)=\left(x-2\right)\left(x^2+2x+2\right)\)
c) \(x^2+4x+3=\left(x^2+x\right)+\left(3x+3\right)=x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
2x2 + 7x + 5 = 2x2 + 2x + 5x + 5 = ( 2x2 + 2x ) + ( 5x + 5 ) = 2x( x + 1 ) + 5( x + 1 ) = ( 2x + 5 )( x + 1 )
x2 + 4x + 3 = x2 + x + 3x + 3 = ( x2 + x ) + ( 3x + 3 ) = x( x + 1 ) + 3( x + 1 ) = ( x + 3 )( x + 1 )
\(4x^4-21x^2y^2+y^4\)
\(=\left(4x^4+4x^2y^2+y^4\right)-25x^2y^2\)
\(=\left(2x^2+y^2\right)^2-\left(5xy\right)^2\)
\(=\left(2x^2+y^2-5xy\right)\left(2x^2+y^2+5xy\right)\)
\(a,4x^4-21x^2y^2+y^4=\left(2x^2\right)^2+4x^2y^2+y^4-4x^2y^2-21x^2y^2\)
\(=\left(2x^2+y^2\right)^2-25x^2y^2\)
\(=\left(2x^2+y^2-5xy\right)\left(2x^2+y^2+5xy\right)\)
\(b,x^5-5x^3+4x=x\left(x^4-5x^2+4\right)\)
\(=x\left(x^4-4x^2-x^2+4\right)\)
\(=x\left[x^2\left(x^2-4\right)-\left(x^2-4\right)\right]\)
\(=x\left(x^2-4\right)\left(x^2-1\right)\)
\(=x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)
\(c,x^3+5x^2+3x-9=x^3-x^2+6x^2-6x+9x-9\)
\(=x^2\left(x-1\right)+6x\left(x-1\right)+9\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+6x+9\right)\)
\(=\left(x-1\right)\left(x^2+3x+3x+9\right)\)
\(=\left(x-1\right)\left[x\left(x+3\right)+3\left(x+3\right)\right]\)
\(=\left(x-1\right)\left(x+3\right)\left(x+3\right)\)
\(=\left(x-1\right)\left(x+3\right)^2\)
\(d,x^{16}+x^8-2=x^{16}+2x^8-x^8-2\)
\(=x^8\left(x^8-1\right)+2\left(x^8-1\right)\)
\(=\left(x^8-1\right)\left(x^8+2\right)\)
a) 4x3y - 12x2y3 - 8x4y3 = 4x2y( x - 3y2 - 2x2y2 )
b) 2x2 + 4x + 2 - 2y2 = 2( x2 + 2x + 1 - y2 ) = 2[ ( x2 + 2x + 1 ) - y2 ] = 2[ ( x + 1 )2 - y2 ] = 2( x - y + 1 )( x + y + 1 )
c) x3 - 2x2 + x - xy2 = x( x2 - 2x + 1 - y2 ) = x[ ( x2 - 2x + 1 ) - y2 ] = x[ ( x - 1 )2 - y2 ] = x( x - y - 1 )( x + y - 1 )
d) x( x - 2y ) + 3( 2y - x ) = x( x - 2y ) - 3( x - 2y ) = ( x - 2y )( x - 3 )
e) x4 + 4 = ( x4 + 4x2 + 4 ) - 4x2 = ( x2 + 2 )2 - ( 2x )2 = ( x2 - 2x + 2 )( x2 + 2x + 2 )
f) 5x2 - 7x - 6 = 5x2 - 10x + 3x - 6 = 5x( x - 2 ) + 3( x - 2 ) = ( x - 2 )( 5x + 3 )
Lời giải:
Các đa thức sau khi được thu gọn và sáp xếp theo lũy giảm dần:
a) \(-x^4-4x^3+3x^2+6x-7\)
Bậc của đa thức: 4
Hệ số cao nhất : -1
Hệ số tự do : -7
b) \(-x^4-5x^3-5x^2+5\)
Bậc của đa thức: 4
Hệ số cao nhất : -1
Hệ số tự do: 5
c) \(7x^2+3x-1\)
Bậc của đa thức: 2
Hệ số cao nhất: 7
Hệ tự do: -1
d) \(3x^4+9x^3-3x^2+5x+4\)
Bậc của đa thức: 4
Hệ số cao nhất: 3
Hệ số tự do: 4
Để thu gọn và sắp xếp các hạng tử của mỗi đa thức, ta cần thực hiện các bước sau:
Đối với đa thức P(x): P(x) = (4x + 1 - x^2 + 2x^3) - (x^4 + 3x - x^3 - 2x^2 - 5) = 4x + 1 - x^2 + 2x^3 - x^4 - 3x + x^3 + 2x^2 + 5 = -x^4 + 3x^3 + x^2 + x + 6
Đối với đa thức Q(x): Q(x) = 3x^4 + 2x^5 - 3x - 5x^4 - x^5 + x + 2x^5 - 1 = 2x^5 - x^5 + 3x^4 - 5x^4 + x - 3x - 1 = x^5 - 2x^4 - 2x - 1
Sau khi thu gọn và sắp xếp các hạng tử, ta có: P(x) = -x^4 + 3x^3 + x^2 + x + 6 Q(x) = x^5 - 2x^4 - 2x - 1
a: \(P\left(x\right)=\left(4x+1-x^2+2x^3\right)-\left(x^4+3x-x^3-2x^2-5\right)\)
\(=4x+1-x^2+2x^3-x^4-3x+x^3+2x^2+5\)
\(=-x^4+3x^3+x^2+x+6\)
\(Q\left(x\right)=3x^4+2x^5-3x-5x^4-x^5+x+2x^5-1\)
\(=\left(2x^5-x^5+2x^5\right)+\left(3x^4-5x^4\right)+\left(-3x+x\right)-1\)
\(=-x^5-2x^4-2x-1\)
b: Bạn ghi lại đề đi bạn
toán lớp 8 mà bạn sao lại lớp 7
mình nhâm hàng :v