Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(25.\left(x-1\right)^2-16\left(x+y\right)^2\)
= \(\left(5x-5\right)^2-\left(4x+y\right)^2\)
= \(\left(5x-5-4x-y\right)\left(5x-5+4x+y\right)\)
= \(\left(x-y-5\right)\left(9x+y-5\right)\)
b) \(x^3+3x^2+3x+1-27z^3\)
= \(\left(x+1\right)^3-27z^3\)
= \(\left(x+1-3z\right)\left(x^2+x.3z+9z^2\right)\)
c) \(x^2-2xy+y^2-xz+yz\)
= \(\left(x-y\right)^2-z\left(x-y\right)\)
= \(\left(x-y\right)\left(x-y-z\right)\)
d) \(a^3x-ab+b-x\)
= \(x\left(a^3-1\right)-b\left(a-1\right)\)
= \(x\left(a-1\right)\left(a^2+a+1\right)-b\left(a-1\right)\)
= \(\left(a-1\right)\left(a^2x+ax+x-b\right)\)
f) \(x^2+2x-4y^2-4y\)
= \(x^2+2x+1-\left(4y^2+4y+1\right)\)
= \(\left(x+1\right)^2-\left(2y+1\right)^2\)
= \(\left(x+1-2y-1\right)\left(x+1+2y+1\right)\)
= \(\left(x-2y\right)\left(x+2y+2\right)\)
g) \(xy-4+2x-2y\)
= \(y\left(x-2\right)-2\left(x-2\right)\)
= \(\left(x-2\right)\left(y-2\right)\)
a: \(=\left(5x-5\right)^2-\left(4x-4y\right)^2\)
\(=\left(5x-5-4x+4y\right)\cdot\left(5x-5+4x-4y\right)\)
\(=\left(x+4y-5\right)\left(9x-4y-5\right)\)
b: \(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)
c: \(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
d: \(=x\left(a^3-1\right)-b\left(a-1\right)\)
\(=x\left(a-1\right)\cdot\left(a^2+a+1\right)-b\left(a-1\right)\)
\(=\left(a-1\right)\left(a^2x+ax+1-b\right)\)
\(1.\)
\(x^2-2x+1-xy-y=\left(x-1\right)^2-y\left(x-1\right)=\left(x-1\right)\left(x-1-y\right)\)
\(2.\)
\(x^3-4x^2+4x-2x+2=x\left(x^2-4x+4\right)-2\left(x-1\right)=x\left(x-2\right)^2-2\left(x-1\right)\)
\(3.\)
\(10x-25-x^2+4y^2=4y^2-\left(x^2-10x+25\right)=4y^2-\left(x-5\right)^2=\left(2y+x-5\right)\left(2y-x+5\right)\)
\(4.\)
\(4x^2-2x+2xy-y=2x\left(2x-1\right)+y\left(2x-1\right)=\left(2x-1\right)\left(2x+y\right)\)
\(5.\)
\(4x\left(x-3\right)^2-3x^2+9x=4x\left(x-3\right)^2-3x\left(x-3\right)=\left(x-3\right)\left(4x^2-12x-3x\right)\)
Dài dữ trời :V Về sau gửi từng bài một thôi, nhìn hoa mắt quá @@
B1: Phân tích thành nhân tử:
a) \(6x^2+9x=3x\left(2x+3\right)\)
b) \(4x^2+8x=4x\left(x+2\right)\)
c) \(5x^2+10x=5x\left(x+2\right)\)
d) \(2x^2-8x=2x\left(x-4\right)\)
e) \(5x-15y=5\left(x-3y\right)\)
f) \(x\left(x^2-1\right)+3\left(x^2-1\right)=\left(x^2-1\right)\left(x+3\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+3\right)\)
g) \(x^2-2x+1-4y^2=\left(x-1\right)^2-4y^2\)
\(=\left(x-1-2y\right)\left(x-1+2y\right)\)
h) \(x^2-100=\left(x-10\right)\left(x+10\right)\)
i) \(9x^2-18x+9=\left(3x-3\right)^2\)
k) \(x^3-8=\left(x-2\right)\left(x^2+2x+4\right)\)
l) \(x^2+6xy^2+9y^4=\left(x+3y\right)^2\)
m) \(4xy-4x^2-y^2=-\left(4x^2-4xy+y^2\right)\)
\(=-\left(2x-y\right)^2\)
n) \(\left(x-15\right)^2-16=\left(x-15-16\right)\left(x-15+16\right)\)
\(=\left(x-31\right)\left(x+1\right)\)
o) \(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3+x\right)\)
\(=\left(2+x\right)\left(8+x\right)\)
p) \(\left(7x-4\right)^2-\left(2x+1\right)^2\)
\(=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)\)
\(=\left(5x-5\right)\left(9x-3\right)\)
Bài 1 :
a ) \(6x^2+9x=3x\left(x+3\right)\)
b ) \(4x^2+8x=4x\left(x+2\right)\)
c ) \(5x^2+10x=5x\left(x+2\right)\)
d ) \(2x^2-8x=2x\left(x-4\right)\)
e ) \(5x-15y=5\left(x-3y\right)\)
f ) \(x\left(x^2-1\right)+3\left(x^2-1\right)=\left(x^2-1\right)\left(x+3\right)\)
g ) \(x^2-2x+1-4y^2=\left(x-1\right)^2-\left(2y\right)^2=\left(x-1-2y\right)\left(x-1+2y\right)\)
h ) \(x^2-100=x^2-10^2=\left(x-10\right)\left(x+10\right)\)
i ) \(9x^2-18x+9=\left(3x-3\right)^2\)
k ) \(x^3-8=\left(x-2\right)\left(x^2+2x+2^2\right)\)
l ) \(x^2+6xy^2+9y^4=\left(x+3y^2\right)^2\)
m ) \(4xy-4x^2-y^2=-\left(2x-y\right)^2\)
n ) \(\left(x-15\right)^2=x^2-30x+15^2\)
o ) \(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3-x\right)=\left(2+x\right)\left(8-x\right)\)
p ) \(\left(7x-4\right)^2-\left(2x+1\right)^2=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)=\left(5x-5\right)\left(9x-3\right)\)
Bài 2 :
a ) \(3x^3-6x^2+3x^2y-6xy=3x\left(x^2-2x+xy-2y\right)\)
b ) \(x^2-2x+xy-2y=x\left(x-2\right)+y\left(x-2\right)=\left(x-2\right)\left(x+y\right)\)
c ) \(2x+x^2-2y-2xy=......................\)
d ) \(x^2-2xy+y^2-9=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)
e ) \(x^2+y^2-2xy-4=\left(x-y\right)^2-2^2=\left(x-y-2\right)\left(x-y+2\right)\)
f )\(2xy-x^2-y^2+9=-\left(x-y\right)^2+9=3^2-\left(x-y\right)^2=\left(3-x+y\right)\left(3+x-y\right)\)
a) \(5x-10x^2\) = \(5x\left(1-2x\right)\)
b) Mạn phép sửa đề:
\(\dfrac{1}{2}x\left(x^2-4\right)+4\left(x+2\right)\) = \(\left(x+2\right)\left[\dfrac{1}{2}x\left(x-2\right)+4\right]\)
= \(\left(x+2\right)\left(\dfrac{1}{2}x^2-x+4\right)\)
c) \(x^4-y^6=\left(x^2-y^3\right)\left(x^2+y^3\right)\)
e) \(x^3-4x^2+4x-1=x^3-x^2-3x^2+3x+x-1\)
= \(x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\)
= \(\left(x-1\right)\left(x^2-3x+1\right)\)
g) \(x^4+6x^3-12x^2-8x\)
= \(x\left(x^3-2x^2+8x^2-16x+4x-8\right)\)
= \(x\left[x^2\left(x-2\right)+8x\left(x-2\right)+4\left(x-2\right)\right]\)
= \(x\left(x-2\right)\left(x^2+8x+4\right)\)
h) \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\) (*)
Đặt \(x^2+4x+8=a\) => (*) trở thành:
\(a^2+3ax+2x^2\) = \(a^2+ãx+2ax+x^2\)
= \(a\left(a+x\right)+2x\left(a+x\right)\)
= \(\left(a+x\right)\left(a+2x\right)\) (1)
Thay \(a=x^2+4x+8\) vào (1) ta được:
\(\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
=\(\left(x^2+5x+8\right)\left(x^2+2x+4x+8\right)\)
= \(\left(x^2+5x+8\right)\left[x\left(x+2\right)+4\left(x+2\right)\right]\)
= \(\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)\)
P/s: Còn câu f đang suy nghĩ!
Câu 2 nha
\(a,x^4+2x^3+x^2\)
\(=x^2\left(x^2+2x+1\right)\)
\(=x^2\left(x+1\right)^2\)
\(c,x^2-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)
a, \(=12x^5+9x^3y^2-6x^2y^3-20x^4y-15x^2y^3-10xy^4-24x^3y^2-18xy^4+12y^5\)
(tự rút gọn cái :P)
b, \(8x^3+4x^2y-2xy^2-y^3\)
\(=4x^2\left(2x+y\right)-y^2\left(2x+y\right)=\left(2x+y\right)^2\left(2x-y\right)\)
\(4x^2y^2-4x^2-4xy-y^2=4x^2y^2-\left(2x+y\right)^2\)
\(=\left(2x+y+2xy\right)\left(2xy-2x+y\right)\)
Mấy cái còn lại nhân tung ra là được mà :))))
\(x^2+4x-y^2+4\\ =\left(x^2+4x+4\right)-y^2\\ =\left(x+2\right)^2-y^2\\ =\left(x+2-y\right)\cdot\left(x+2+y\right)\)
\(2xy-x^2-y^2+16\\ =\left(x^2-2xy+y^2\right)-16\\ =\left(x-y\right)^2-16\\ =\left(x-y+4\right)\cdot\left(x-y-4\right)\)
\(x^2-2x-4y^2-4y\\ =\left(x^2-4y^2\right)-\left(2x+4y\right)\\ =\left(x-2y\right)\cdot\left(x+2y\right)-2\left(x+2y\right)\\ =\left(x+2y\right)\cdot\left(x-2y+2\right)\)
\(x^2+6x+9-y^2\\ =\left(x-3\right)^2-y^2\\ =\left(x-3-y\right)\cdot\left(x-3+y\right)\)
\(3x^2+6xy+3y^2-3z^2\\ =3\cdot\left(x^2+2xy+y^2-z^2\right)\\ =3\cdot\left[\left(x^2+2xy+y^2\right)-y^2\right]\\ =3\cdot\left[\left(x-y\right)^2-z^2\right]\\ =3\cdot\left(x-y-z\right)\cdot\left(x-y+z\right)\)
\(9x-x^3\\ =x\cdot\left(9-x^2\right)\\ =x\cdot\left(3-x\right)\cdot\left(3+x\right)\)
\(\left(2xy+1\right)^2-\left(2x+y\right)^2\\ =\left(2xy+1-2x-y\right)\cdot\left(2xy+1+2x-y\right)\)