Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)^4+\left(x^2+x+1\right)^2\)
\(=2x^4+6x^3+9x^2+6x+2\)(bạn nhân phá ngoặc rồi thu gọn nhé)
\(=\left(2x^4+2x^3+x^2\right)+\left(4x^3+4x^2+2x\right)+\left(4x^2+4x+2\right)\)
\(=x^2\left(2x^2+2x+1\right)+2x\left(2x^2+2x+1\right)+2\left(2x^2+2x+1\right)\)
\(=\left(x^2+2x+2\right)\left(2x^2+2x+1\right)\)
\(x^8+x^7+1\)
\(=x^8+x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-xx+1\)
\(=\left(x^8-x^6+x^5-x^3+x^2\right)\)
\(+\left(x^7-x^5+x^4-x^2+x\right)\)
\(+\left(x^6-x^4+x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
\(x^4-x^3-x^2+1\)
\(\text{ Phân tích thành nhân tử}\)
\(\left(x-1\right)\left(x^3-x-1\right)\)
\(-x-y^2+x^2-y\)
\(\text{ Phân tích thành nhân tử}\)
\(\left(-\left(y-x+1\right)\right)\left(y+x\right)\)
\(x^2-y^2-x-y\)
\(\text{ Phân tích thành nhân tử}\)
\(\left(-\left(y-x+1\right)\right)\left(y+x\right)\)
\(x^2-y^2+4-4x\)
\(\text{ Phân tích thành nhân tử}\)
\(\left(-\left(y-x+2\right)\right)\left(y-x+2\right)\)
a) \(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2ac\)
\(=a^2+b^2+c^2+2ab-2bc-2ac-a^2+2ac-c^2-2ab+2ac\)
\(=b^2-2bc+2ac=b.\left(b-2c+2a\right)\)
b) \(x^4+2x^3+5x^2+4x-12\)
\(=x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12\)
\(=x^3.\left(x-1\right)+3x^2.\left(x-1\right)+8x.\left(x-1\right)+12.\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+3x^2+8x+12\right)\)
\(=\left(x-1\right)\left[\left(x^3+2x^2\right)+\left(x^2+2x\right)+\left(6x+12\right)\right]\)
\(=\left(x-1\right)\left[x^2.\left(x+2\right)+x.\left(x+2\right)+6.\left(x+2\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
Pạn Khánh Châu ơi
Cái dòng thứ 2 đấy, dấu hiệu nhận biết là j vậy
Mà sao pạn phân tích hay vậy????
a ) x^4 - x^3 - x^2 +1
=từ từ
b ) - x - y^2 + x^2 - y
=(x+y)(x-y) - (x+y)
= (x+y) (x-y+1)
c ) x^2 - y^2 - x - y
= Giống câu b
d ) x^2 - y^2 + 4 - 4x
= (x^2 - 2x + 4) - y^2
= (x-2)^2 - y^2
= (x+y-2) (x-y-2)
b. 2x3-3x2+3x-1=2x3-x2-2x2+x+2x-1
= x2(2x-1)-x(2x-1)+(2x-1)
=(2x-1)(x2-x-1)
c. 3x3-14x2+4x+3= 3x3+x2-15x2-5x+9x+3
=x2(3x+1)-5x(3x-1)+3(3x+1)
=(3x+1)(x2-5x+3)
Bài 2:
\(\left(5x+1\right)^2-\left(2xy-3\right)^2\)
\(=25x^2+10x+1-\left(2xy-3\right)^2\)
\(=25x^2+10x+1\left(4x^2y^2-12xy+9\right)\)
\(=25x^2+10x+1-4x^2y^2+12xy-9\)
\(=25x^2-4x^2y^2+10x+12xy-8\)
Bài 2:
\(\left(x-1\right)\left(x^2+x+1\right)=x^2\left(x-9\right)+2x+6\)
\(=x^3-1=x^3-9x^2+2x+6\)
\(=x^3-9x^2+2x+6=x^3-1\)
\(=x^3-9x^2+2x+6+1=x^3-1+1\)
\(=x^3-9x^2+2x+7=x^3\)
\(=x^3-9x^2+2x+7-x^3=x^3-x^3\)
\(=-9x^2+2x+7=0\)
\(\Rightarrow x=-\frac{7}{9};x=1\)
a) \(x\left(x+4\right)\left(x-4\right)-\left(x^2-1\right)\left(x^2+1\right)\)
\(=x\left(x^2-16\right)-\left(x^4-1\right)\)
\(=x^3-16x-x^4+1\)
bạn ktra lại đề
b) \(x^4+2x^3+5x^2+4x-12\)
\(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+3x^2+8x+12\right)\)
\(=\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
Ủa pạn có thể giải ại cái bước thứ 2 đc ko ạk