K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2018

a) P(x)=6x3+13x2+4x-3

=6x3+6x2+7x2+7x-3x-3

=(6x3+6x2)+(7x2+7x)-(3x+3)

=6x2(x+1)+7x(x+1)-3(x+1)

=(x+1)(6x2+7x-3)

=(x+1)(6x2+9x-2x-3)

=(x+1)[(6x2+9x)-(2x+3)]

=(x+1)[3x(2x+3)-(2x+3)]

=(x+1)(2x+3)(3x-1)

=

3 tháng 10 2021

a) \(4x\left(a-b\right)+6xy\left(b-a\right)\)

\(=4x\left(a-b\right)-6xy\left(a-b\right)\)

\(=\left(4x-6xy\right)\left(a-b\right)\)

\(=2x\left(2-3y\right)\left(a-b\right)\)

3 tháng 10 2021

b) \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)

\(=3\left(2x+1\right)-\left(2x-5\right)\left(2x+1\right)\)

\(=\left(3-2x+5\right)\left(2x+1\right)\)

\(=\left(8-2x\right)\left(2x+1\right)\)

\(=2\left(4-x\right)\left(2x+1\right)\)

20 tháng 11 2016

a) \(\left(x+8\right)^2-2\left(x+8\right)\left(x-2\right)+\left(x-2\right)^2\)

\(=\left[\left(x+8\right)-\left(x-2\right)\right]^2\)

\(=\left(x+8-x+2\right)^2\)

\(=10^2\)

\(=2^2.5^2\)

b)\(x^3-4x^2-12x+27=\left(x^3+27\right)-\left(4x^2+12x\right)\)

\(=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-3x+9-4x\right)\)

\(=\left(x+3\right)\left(x^2-7x+9\right)\)

c)\(x^3+6x^2+11x+6=x^3+x^2+5x^2+5x+6x+6\)

\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+5x+6\right)\)

\(=\left(x+1\right)\left(x^2+2x+3x+6\right)\)

\(=\left(x+1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)

\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

d)\(x^3+6x^2-13x-42=x^3-3x^2+9x^2-27x+14x-42\)

\(=x^2\left(x-3\right)+9x\left(x-3\right)+14\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+9x+14\right)\)

\(=\left(x-3\right)\left(x^2+2x+7x+14\right)\)

\(=\left(x-3\right)\left[x\left(x+2\right)+7\left(x+2\right)\right]\)

\(=\left(x-3\right)\left(x+2\right)\left(x+7\right)\)

11 tháng 11 2016

a)x(x^2-x+2)(x^2+x+2)

còn lại thì vào đây: https://coccoc.com/search/math

22 tháng 11 2017

a. \(=4x^3-12x^2-x^2+3x+6x-18=\left(x-3\right)\left(4x^2-x+6\right)\)

b.  \(=-x^3+x^2-7x^2+7x-x+1=\left(x-1\right)\left(-x^2-7x-1\right)\)

c.  \(=x^3+2x^2-6x^2-12x+4x+8=\left(x+2\right)\left(x^2-6x+4\right)\)

30 tháng 9 2016

sai đề thì sửa dùm mik nhé

1 tháng 10 2016

giúp mik bài này với

CẦN GẤP

30 tháng 9 2021

e) \(=x^2\left(x+1\right)-2x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(x^2-2x+3\right)\)

g) \(=x^2\left(3x-1\right)-x\left(3x-1\right)+4\left(3x-1\right)=\left(3x-1\right)\left(x^2-x+4\right)\)

h) \(=3x^2\left(2x+1\right)-x\left(2x+1\right)+\left(2x+1\right)=\left(2x+1\right)\left(3x^2-x+1\right)\)

i) \(=2x^2\left(2x+1\right)+2x\left(2x+1\right)+\left(2x+1\right)=\left(2x+1\right)\left(2x^2+2x+1\right)\) 

30 tháng 9 2021

ảm ơn nha

 

24 tháng 7 2018

\(2x^3-35x+75=2x^2\left(x+5\right)-10x\left(x+5\right)+15\left(x+5\right)=\left(x-5\right)\left(2x^2-10+15\right) \)

24 tháng 7 2018

c/ \(x^5+x^4+x^3+x^2+x+1\)

\(\left(x^5+x^4\right)+\left(x^3+x^2\right)+\left(x+1\right)\)

\(x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)\)

=\(\left(x+1\right)\left(x^4+x^2+1\right)\)

31 tháng 5 2016

a. \(-x^3-6x^2+6x+1=-x^3+x^2-7x^2+7x-x+1=\left(1-x\right)\left(x^2+7x+1\right)\)

b. \(x^4-4x^2+4x-1=x^4-1-4x\left(x-1\right)=\left(x-1\right)\left[\left(x+1\right)\left(x^2+1\right)-4x\right]\)

\(=\left(x-1\right)\left(x^3+x^2-3x+1\right)\)

c. \(6x^3-x^2-486x+81=6x^3-54x^2+53x^2-477x-9x+81=\left(x-9\right)\left(6x^2+53x-9\right)\)

\(=\left(x-9\right)\left(x+9\right)\left(6x-1\right)\)

d. \(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)=x^2\left(x^2+8x+16\right)-x^2-8x-16-x^2+1\)

\(=x^4+8x^3+14x^2-8x-15=x^4+5x^3+3x^3+15x^2-x^2-5x-3x-15\)

\(=\left(x+5\right)\left(x^3+3x^3-x-3\right)=\left(x+5\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)\)

Để phân tích nhân tử các dạng này, em cần nhẩm được nghiệm để biết đc nhân tử chung là gì, sau đó tách để xuất hiện nhân tử chung đó. CHÚC EM HỌC TỐT :)) 

c: \(\left(x+y\right)^3-x^3-y^3\)

\(=\left(x+y\right)^3-\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)\)

\(=3xy\left(x+y\right)\)