K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

a) \(\left(x^2-x+2\right)^2+\left(x-2\right)^2\)

\(=x^4+x^2+4-2x^3-4x+4x^2+x^2-4x+4\)

\(=x^4-2x^3+6x^2-8x+8\)

\(=x^4-2x^3+2x^2+4x^2-8x+8\)

\(=x^2\left(x^2-2x+2\right)+4\left(x^2-2x+2\right)\)

\(=\left(x^2+4\right)\left(x^2-2x+2\right)\)

b) \(6x^5+15x^4+20x^3+15x^2+6x+1\)

\(=6x^5+3x^4+12x^4+6x^3+14x^3+7x^2+8x^2+4x+2x+1\)

\(=3x^4\left(2x+1\right)+6x^3\left(2x+1\right)+7x^2\left(2x+1\right)+4x\left(2x+1\right)+2x+1\)

\(=\left(2x+1\right)\left(4x^4+6x^3+7x^2+4x+1\right)\)

\(=\left(2x+1\right)\left(3x^4+3x^3+3x^2+3x^3+3x^2+3x+x^2+x+1\right)\)

\(=\left(2x+1\right)\left[\left(3x^2\right)\left(x^2+x+1\right)+3x\left(x^2+x+1\right)+\left(x^2+x+1\right)\right]\)

\(=\left(2x+1\right)\left(x^2+x+1\right)\left(3x^2+3x+1\right)\)

10 tháng 2 2018

a, = [(x-2).(x+1)]^2+(x-2)^2

    = (x-2)^2.(x+1)^2+(x-2)^2

    = (x-2)^2.[(x+1)^2+1]

    = (x-2)^2.(x^2+2x+2)

Tk mk nha

10 tháng 2 2018

b)  \(6x^5+15x^4+20x^3+15x^2+6x+1\)

\(=6x^5+3x^4+12x^4+6x^3+14x^3+7x^2+8x^2+4x+2x+1\)

\(=\left(2x+1\right)\left(3x^4+6x^3+7x^2+4x+1\right)\)

\(=\left(2x+1\right)\left(3x^4+3x^3+3x^2+3x^3+3x^2+3x+x^2+x+1\right)\)

\(=\left(2x+1\right)\left(x^2+x+1\right)\left(3x^2+3x+1\right)\)

7 tháng 3 2017

Nhiều quá cho đáp số thôi nhé

a/ \(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1=\left(x^2-7x+11\right)^2\)

b/ \(x^4+2015x^2+2014x+2015=\left(x^2-x+2015\right)\left(x^2+x+1\right)\)

c/ \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

d/ \(\left(x^2-x+1\right)^2-5x\left(x^2-x+1\right)+4x^2=\left(x-1\right)^2\left(x^2-5x+1\right)\)

e/ \(12x^3+16x^2-5x-3=\left(2x-1\right)\left(2x+3\right)\left(3x+1\right)\)

(4x2)(10x+4)(5x+7)(2x+1)+17=0(4x−2)(10x+4)(5x+7)(2x+1)+17=0

(4x2)(5x+7)(10x+4)(2x+1)+17=0⇔(4x−2)(5x+7)(10x+4)(2x+1)+17=0

(20x2+18x14)(20x2+18x+4)+17=0⇔(20x2+18x−14)(20x2+18x+4)+17=0

Đặt t= 20x2+18x+4(t0)20x2+18x+4(t≥0) ta có:

(t-18).t +17=0

t218t+17=0⇔t2−18t+17=0

(t17)(t1)=0⇔(t−17)(t−1)=0

[t=17(tm)t=1(tm)⇔[t=17(tm)t=1(tm) [20x2+18x+4=1720x2+18x+4=1[20x2+18x13=020x2+18+3=0⇔[20x2+18x+4=1720x2+18x+4=1⇔[20x2+18x−13=020x2+18+3=0

[(20x+9341)(20x+9+341)=0(20x+921)(20x+9+21)=0⇔[(20x+9−341)(20x+9+341)=0(20x+9−21)(20x+9+21)=0

x=9+34120x=934120x=9+2120x=92120

6 tháng 6 2019

\(a,\)\(\left(4x-2\right)\left(10x+4\right)\left(5x+7\right)\left(2x+1\right)+17\)

\(=\left(4x-2\right)\left(5x+7\right)\left(10x+4\right)\left(2x+1\right)+17\)

\(=\left(20x^2+18x-5\right)\left(20x^2+18x+4\right)+17\)

Đặt ....

24 tháng 8 2019

\(4\left(x+3y-4\right)^2-x^2+6x-9\)

\(=\left[2\left(x+3y-4\right)\right]^2-\left(x^2-6x+9\right)\)

\(=\left[2x+6y-8\right]^2-\left(x-3\right)^2\)

\(=\left(2x+6y-8+x-3\right)\left(2x+6y-8-x+3\right)\)

\(=\left(3x+6y-11\right)\left(x+6y-5\right)\)

16 tháng 8 2018

1)    \(x^4+4=\left(x^2+2\right)^2-4x^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)

2) \(a^4+64=\left(a^2+8\right)-16a^2=\left(a^2+4a+8\right)\left(a^2-4a+8\right)\)

3)  \(x^5+x+1\)

\(=\left(x^5-x^4+x^2\right)+\left(x^4-x^3+x\right)+\left(x^3-x^2+1\right)\)

\(=x^2\left(x^3-x^2+1\right)+x\left(x^3-x^2+1\right)+\left(x^3-x^2+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

4) \(x^5+x-1\)

\(=\left(x^5+x^4-x^2\right)-\left(x^4+x^3-x\right)+\left(x^3+x^2-1\right)\)

\(=x^2\left(x^3+x^2-1\right)-x\left(x^3+x^2-1\right)+\left(x^3+x^2-1\right)\)

\(=\left(x^2-x+1\right)\left(x^3+x^2-1\right)\)

17 tháng 1 2018

[(x+2)(x+5)][(x+3)(x+4)] -24

= (x2+7x+10)(x2+7x+12) -24

=(x2+7x+11-1)(x2+7x+11+1) -24

=(x2+7x+11)2-1-24

=(x2+7x+11)2 -25

=(x2+7x+11-5)(x2+7x+11+5)=(x2+7x+6)(x2+7x+16)

17 tháng 1 2018

cảm ơn nhiều nha

13 tháng 8 2018

1) \(3\left(x+4\right)-x^2-4x=3\left(x+4\right)-x\left(x+4\right)=\left(x+4\right)\left(3-x\right)\)

2) \(5x^2-5y^2-10x+10y=5\left(x^2-y^2\right)-10\left(x-y\right)\)

            \(=5\left(x-y\right)\left(x+y\right)-10\left(x-y\right)=\left(x-y\right)\left(5x+5y-10\right)\)

3) \(x^2-xy+x-y=x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(x+1\right)\)

4) \(ax-bx-a^2+2ab-b^2=x\left(a-b\right)-\left(a^2-2ab+b^2\right)\)

                            \(=x\left(a-b\right)-\left(a-b\right)^2=\left(a-b\right)\left(x-a+b\right)\)

5) \(x^3-x^2-x+1=x^2\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^2-1\right)\)

                                \(=\left(x-1\right)\left(x-1\right)\left(x+1\right)=\left(x-1\right)^2\left(x+1\right)\)

6) \(x^2+4x-y^2+4=x^2+4x+4-y^2=\left(x+2\right)^2-y^2\)

                                   \(=\left(x+2-y\right)\left(x+2+y\right)\)

14 tháng 8 2018

Phân tích các đa thức sau thành nhân tử :

1) x^3 + x^2y - 4x - 4y

2) x^3 - 3x^2 +1 - 3x

3) 3x^2 - 6xy + 3y^2 - 12z^2

4) x^2 - 2x - 15

5) 2x^2 +3x - 5

6) 2x^2 - 18

7) x^2 - 7xy + 10y^2

8) x^3 - 2x^2 + x - xy^2

Làm nhanh giúp mình với nhé .....mình đang cần gấp[[[[

10 tháng 2 2018

a, Xét : 3 - E = 3x^3-3xy-3y^3-x^3-xy-y^2/x^2-xy+y^2

= 2x^2-4xy+2y^2/x^2-xy+y^2

= 2.(x^2-2xy+y^2)/x^2-xy+y^2

= 2.(x-y)^2/x^2-xy+y^2 

>= 0 ( vì x^2-xy+y^2 > 0 )

Dấu "=" xảy ra <=> x-y=0 <=> x=y

Vậy ..........

10 tháng 2 2018

b, Có : (x+1995)^2 = x^2+3990+1995^2 = (x^2-3990x+1995^2)+7980x

= (x-1995)^2 + 7980x >= 7980x

=> M < = x/7980x = 1/7980 ( vì x > 0 )

Dấu "=" xảy ra <=> x-1995=0 <=> x=1995

Vậy ...............