K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2019

b)a(b-c)3+b(c-a)3+c(a-b)3
Bạn tự tách trong ngoặc ra nhá
=ab3-ac3+bc3-a3b+a3c-b3c
=b3(a-c)+ac(a2-c2)-b(a3-c3)
=b3(a-c)+ac(a-c)(a+c)-b(a-c)(a2+ac+c2)
=(a-c)[b3+ac(a+c)-b(a2+ac+c2)]
=(a-c)(b3+a2c+ac2-ba2-abc-bc2)
=(a-c)[ac(a+c)+b(b2-a2)-bc(a+c)]
=(a-c)[c(a+c)(a-b)-b(a-b)(a+b)]
=(a-c)(ca+c2-ab-b2)(a-b)

28 tháng 7 2016

1.  x^3-19x-30 
=x^3-25x+6x-30 
=x(x^2-25)+6(x-5) 
=x(x+5)(x-5)+6(x-5) 
=(x-5)(x^2+5x+6) 
=(x-5)(x^2+2x+3x+6) 
=(x-5)[x(x+2)+3(x+2)] 
=(x-5)(x+2)(x+3)

28 tháng 7 2016

 2.

a + b + c = 0 
<=> (a + b + c)² = 0 
<=> a² + b² + c² + 2(ab + bc + ca) = 0 
<=> a² + b² + c² = -2(ab + bc + ca) ------------(1) 

CẦn chứng minh: 

2(a^4 + b^4 + c^4) = (a² + b² + c²)² 

<=> 2(a^4 + b^4 + c^4) = a^4 + b^4 + c^4 + 2(a²b² + b²c² + c²a²) 

<=> a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²) 

<=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²) ---(cộng 2 vế cho 2(a²b² + b²c² + c²a²) ) 

<=> [-2(ab + bc + ca)]² = 4(a²b² + b²c² + c²a²) ----(do (1)) 

<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²) 

<=> 8.(ab²c + bc²a + a²bc) = 0 

<=> 8abc.(a + b + c) = 0 

<=> 0 = 0 (đúng), Vì a + b + c = 0 

=> Đpcm

30 tháng 6 2016

hằng đẳng thức thứ nhất sai rồi bạn , phải là 

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

30 tháng 6 2016

\(\text{ a( b + c)^2(b - c) + b( c + a)^2( c - a) + c( a + b)^2( a - b)}\)

\(\text{ Phân tích thành nhân tử}\)

\(\left(b-a\right)\left(c-a\right)\left(c-b\right)\left(c+b+a\right)\)

\(a\left(b-c\right)^3+b\left(c-a\right)^3+c\left(a-b\right)^3\)

\(\text{Phân tích thành nhân tử}\)

\(\left(b-a\right)\left(c-a\right)\left(c-b\right)\left(c+b+a\right)\)

11 tháng 7 2017

Dạ e cám ơn, nhưng mà còn câu b, c, d, e ạ...

5 tháng 4 2020

a, Ta có : BĐT \(a^2+b^2\ge2ab\) = BĐT cauchuy .

-> Áp dụng BĐT cauchuy ta được :

\(\left\{{}\begin{matrix}a^4+b^4\ge2\sqrt{a^4b^4}=2a^2b^2\\c^4+d^4\ge2\sqrt{c^4d^4}=2c^2d^2\end{matrix}\right.\)

- Cộng 2 bpt lại ta được :

\(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2=2\left(\left(ab\right)^2+\left(cd\right)^2\right)\)

- Mà \(\left(ab\right)^2+\left(cd\right)^2\ge2abcd\)

=> \(a^4+b^4+c^4+d^4\ge2.2abcd=4abcd\)

b, CMTT câu 1 .

- Áp dụng BĐT cauchuy ta được :

\(\left\{{}\begin{matrix}a^2+1\ge2a\\b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)

- Nhân 3 bpt trên lại ta được :

\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2.2.2abc=8abc\)