Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3^2\left(y-x\right)+6x^2\left(x-y\right)^2\)
\(=3\left(y-x\right)\left[3+2x^2\left(y-x\right)\right]\)
\(=3\left(y-x\right)\left(3+2x^2y-2x^3\right)\)
b) \(x^4-3x^3+3x-1\)
\(=\left(x^4+x^3\right)-\left(4x^3+4x^2\right)+\left(4x^2+4x\right)-\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3-4x^2+4x-1\right)\)
\(=\left(x+1\right)\left[\left(x^3-x^2\right)-\left(3x^2-3x\right)+\left(x-1\right)\right]\)
\(=\left(x+1\right)\left(x-1\right)\left(x^2-3x+1\right)\)
a)(x+y)2-(x-y)2
=(x+y-x+y)(x+y+x-y)
=2y.2x=4xy
b)(3x+1)2-(x+1)2
=(3x+1-x-1)(3x+1+x+1)
=2x.(4x+2)
=4x(2x+1)
c) x3+y3+z3-3xyz
= (x+y)3- 3xy(x+y) +z3-3xyz
=(x+y+z)( x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)
=(x+y+z)(x2+y2+z2-xy-xz-yz)
Phân tích đa thức sau thành nhân tử :
a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
b) \(x^3+y^3+z^3-3xyz\)
Ta có (6x+5)2(3x+2)(x+1)-35
= (36x2+60x+25)(3x2+5x+2)-35 (1)
Đặt a=3x2+5x+2
=> 12a+1= 12(3x2+5x+2)+1 =36x2+60x+25
Thay a=3x2+5x+2 vào (1) ta được
(12a+1).a-35=12a2+a-35
= 12a2-20a+21a-35
= 4a(3a-5)+7(3a-5)
= (3a-5)(4a+7) (2)
Thay 3x2+5x+2=a vào (2) ta được
(9x2+15x+6-5)(12x2+20x+8+7)
= (9x2+15x+1)(12x2+20x+15)
Ta có: \(\left(6x+5\right)^2\left(3x+2\right)\left(x+1\right)-35\)
\(=\left(36x^2+60x+25\right)\left(3x^2+5x+2\right)-35\)(1)
Đặt \(3x^2+5x+2=y\)
\(\left(1\right)=\left(12y+1\right)y-35\)
\(=12y^2+y-35\)
\(=\left(3y-5\right)\left(4y+7\right)\)
\(=\left(9x^2+15x+1\right)\left(12x^2+20x+15\right)\)
\(\left(2x-y\right)\left(x-y\right)-\left(3y-4x\right)^2+\left(y-2x\right)\left(2y-3x\right)\)
=(2x-y)(x-y)-(2x-y)(2y-3x)-(4x-3y)2
=(2x-3y)(x-y-2y+3x)-(4x-3y)2
=(2x-3y)(4x-3y)-(4x-3y)2
=(4x-3y)(2x-3y-4x+3y)
=(4x-3y))(-2x)
Ta có: \(3x^2\left(y-x\right)+6x^2\left(x-y\right)^2\)
\(=3x^2\left(y-x\right)+6x^2\left(y-x\right)^2\)
\(=3x^2\left(y-x\right)\left[1-2\left(y-x\right)\right]\)
\(=3x^2\left(y-x\right)\left(2x-2y+1\right)\)
3x2( y - x ) + 6x2( x - y )2
= 3x2( y - x ) + 6x2( y - x )2
= 3x2( y - x )[ 1 + 2( y - x ) ]
= 3x2( y - x )( 2y - 2x + 1 )