Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,(x-y)^2-2(x+y)+1 b, x^2-y^2+4x+4 c, 4x^2-y^2+8(y-2)
=(x-y-1)^2 =(x^2+4x+4)-y^2 =4x^2-y^2+8y-16
=(x+2)^2-y^2 =4x^2-(y^2-8y+16)
=(x+2-y)(x+2+y) =4x^2-(y-4)^2
a) (x+y)2-2(x+y)+1=(x+y-1)2
b) x2-y2+4x+4 = (x2+4x+4)-y2=(x+2)2-y2=(x+y+2)(x-y+2)
c)4x2-y2+8(y-2) = 4x2-(y2-8y+16) = (2x)2-(y-4)2=(2x+y-4)(2x-y+4)
d)x3-2x2+2x-4 = x2(x-2)+2(x-2) = (x-2)(x2+2)
e)xy-4+2x-2y=x(y+2) - 2(y+2) = (x-2)(y+2)
Ta có ; x2 - 11x + 24
= x2 - 3x - 8x + 24
= x(x - 3) - (8x - 24)
= x(x - 3) - 8(x - 3)
= (x - 3)(x - 8)
Câu 2 nha
\(a,x^4+2x^3+x^2\)
\(=x^2\left(x^2+2x+1\right)\)
\(=x^2\left(x+1\right)^2\)
\(c,x^2-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)
1, x2+3xy+2y2= x2+xy+2xy+2y2=x(x+y)+2y(x+y)=(x+2y)(x+y)
2, x(x+2)(x+3)(x+5)+9=x(x+5)(x+2)(x+3)+9=(x2+5x)(x2+5x+6)+9
Đặt x2+5x=t, ta có
t(t+6)+9=t2+6t+9=(t+3)2=(x2+5x+3)2=(x2+8)2
3, x2+2xy+y2+2x+2y-15=(x+y)2+2(x+y)-15=(x+y)2+2(x+y)+1-16=(x+y+1)2-42
= (x+y+1-4)(x+y+1+4)=(x+y-3)(x+y+5)
4, 4x4y4+1=4x4y4+4x2y2+1-4x2y2=(2x2y2+1)2-(2xy)2=(2x2y2+1-2xy)(2x2y2+1+2xy)
b: \(=4x^4+4x^2y^2+y^4-25x^2y^2\)
\(=\left(2x^2+y^2\right)^2-25x^2y^2\)
\(=\left(2x^2-5xy+y^2\right)\left(2x^2+5xy+y^2\right)\)
c: \(=2\cdot x^2\cdot\left(x+1\right)^2-\dfrac{1}{2}x^2\)
\(=x^2\left(2x^2+4x+2-\dfrac{1}{2}\right)\)
\(=x^2\left(2x^2+4x+\dfrac{3}{2}\right)\)
\(=x^2\left(2x^2+x+3x+\dfrac{3}{2}\right)\)
\(=x^2\left[x\left(2x+1\right)+\dfrac{3}{2}\left(2x+1\right)\right]\)
\(=x^2\left(2x+1\right)\left(x+\dfrac{3}{2}\right)\)