Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+2x\right).\left(1-2x\right)-x.\left(x+2\right).\left(x-2\right)\))
\(=1-\left(2x\right)^2-x.x^2-2^2\)
\(=1-4x^2-x^3-4\)
Ko bt có đúng ko nữa
2x(x-1)-3x+3
=2x(x-1)-(3x-3)
=2x(x-1)-3(x-1)
=(x-1)(2x-3)
x(x+2)(x^2+2x+2)+1 = (x^2+2x)(x^2+2x+1)+1
Đặt x^2+2x+1=y ta được:
(y-)(y+1)+1=y^2-1+1=y^2
= (x^2+2x+1)^2
= ( x + 1 )^4
Bài này ko thể phân tích theo kiểu lớp 8 được (chưa học căn thức)
\(2x^2-6x+1=\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\frac{3\sqrt{2}}{2}+\left(\frac{3\sqrt{2}}{2}\right)^2-\frac{7}{2}\)
\(=\left(\sqrt{2}x-\frac{3\sqrt{2}}{2}\right)^2-\left(\frac{\sqrt{14}}{2}\right)^2\)
\(=\left(\sqrt{2}x-\frac{3\sqrt{2}}{2}+\frac{\sqrt{14}}{2}\right)\left(\sqrt{2}x-\frac{3\sqrt{2}}{2}-\frac{\sqrt{14}}{2}\right)\)
\(=\left(\sqrt{2}x+\frac{\sqrt{14}-3\sqrt{2}}{2}\right)\left(\sqrt{2}x-\frac{\sqrt{14}+3\sqrt{2}}{2}\right)\)
\(2x^2-6x+1=2\left(x^2-3x+\frac{9}{4}-\frac{7}{4}\right)=2\left[\left(x-\frac{3}{2}\right)^2-\left(\frac{\sqrt{7}}{2}\right)^2\right]=2\left(x-\frac{3}{2}-\frac{\sqrt{7}}{2}\right)\left(x-\frac{3}{2}+\frac{\sqrt{7}}{2}\right)\)
\(=2\left(x-\frac{3+\sqrt{7}}{2}\right)\left(x-\frac{3-\sqrt{7}}{2}\right)\)
Lưu ý rằng ba điều kiện đầu tiên yếu tố như (x + 1) ^ 2, do đó chúng ta có:
x^2 + 2x + 1 - y^2 = (x + 1)^2 - y^2.
(x + 1)^2 - y^2 = [(x + 1) + y][(x + 1) - y], từ a^2 - b^2 = (a + b)(a - b)
= (x + y + 1)(x - y + 1).
\(x^4+2x^2+1=\left(x^2+1\right)^2\) (Nhớ k cho mình với nhé!)