Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay `x = 2` ta được :
`x^4+x^3-9x^2+10x-8`
`= 2^4 + 2^3 - 9*2^2 + 10*2 - 8`
`= 16 + 8 - 36 + 20 - 8`
`= 0`
Vậy `x = 2` là nghiệm của phương trình trên
Do đó ta thực hiện phép chia :
\(\left(x^4+x^3-9x^2+10x-8\right):\left(x-2\right)\)
Vậy \(x^4+x^3-9x^2+10x-8=\left(x-2\right)\left(x^3+3x^2-3x+4\right)\).
(x2 + 2.x.3 + 32 - 1).(x2 + 2.x.4 + 16 - 1) - 24
=[(x+3)2 - 1]. [(x+4)2-1] -24
=(x+3+1)(x+3-1)(x+4+1)(x+4-1) - 24
=(x+4)(x+2)(x+5)(x-3) - 24
(x2+6x+8)(x2+8x+15)-24
<=>(x2+4x+2x+8)(x2+5x+3x+15)-24
<=> [x(x+4)+2(x+4)][x(x+5)+3(x+5)]-24
<=> (x+4)(x+2)(x+5)(x+3)-24
<=> (x+4)(x+3)(x+2)(x+5)-24
<=>(x2+7x+12)(x2+7x+10)
đặt t=x2+7x+11 ta có:
(t-1)(t+1)-24
<=> t2-1-24
<=>t2-25
<=>(t-5)(t+5)
thay t=x2+7x+11 vào ta có:
(x2+7x+11-5)(x2+7x+11+5)
<=>(x2+7x+6)(x2+7x+16)
a)\(3x^2-11x+6=3x^2-9x-2x+6=3x\left(x-3\right)-2\left(x-3\right)=\left(3x-2\right)\left(x-3\right)\)
b)\(8x^2+10x-3=8x^2+12x-2x-3=4x\left(2x+3\right)-\left(2x+3\right)=\left(4x-1\right)\left(2x+3\right)\)
c)\(8x^2-2x-1=8x^2+2x-4x-1=2x\left(4x+1\right)-\left(4x+1\right)=\left(2x-1\right)\left(4x+1\right)\)
(*)\(3x^2-11x+6=3x^2-2x-9x+6=x\left(3x-2\right)-3\left(3x-2\right)=\left(x-3\right)\left(3x-2\right)\)
(*)\(x^2-6x+5=x^2-x-5x+5=x\left(x-1\right)-5\left(x-1\right)=\left(x-5\right)\left(x-1\right)\)
(*)\(x^4+x^2+1=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2=\left(x^2+1+x\right)\left(x^2+1-x\right)\)
(*)\(x^4-4x^2+3=x^4-x^2-3x^2+3=x^2\left(x^2-1\right)-3\left(x^2-1\right)=\left(x+1\right)\left(x-1\right)\left(x^2-3\right)\)
(*)\(6x^2+7xy+2y^2=6x^2+4xy+3xy+2y^2=2x\left(3x+2y\right)+y\left(3x+2y\right)=\left(2x+y\right)\left(3x+2y\right)\)
a, \(3x^2-11x+6=3x^2-2x-9x+6=x\left(3x-2\right)-3\left(3x-2\right)=\left(3x-2\right)\left(x-3\right)\)
b, \(x^2-6x+5=x^2-x-5x+5=x\left(x-1\right)-5\left(x-1\right)=\left(x-1\right)\left(x-5\right)\)
c, \(x^4+x^2+1=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
d, \(x^4-4x^2+3=x^4-4x^2+4-1=\left(x^2-2\right)^2-1=\left(x^2-1\right)\left(x^2-3\right)=\left(x+1\right)\left(x-1\right)\left(x^2-3\right)\)
e, \(6x^2+7xy+2y^2=6x^2+3xy+4xy+2y^2=3x\left(2x+y\right)+2y\left(2x+y\right)=\left(2x+y\right)\left(3x+2y\right)\)
\(3x^4-48\)
\(=\left(3x^4-6x^3\right)+\left(6x^3-12x^2\right)+\left(12x^2-24x\right)+\left(24x-48\right)\)
\(=3x^3\left(x-2\right)+6x^2\left(x-2\right)+12x\left(x-2\right)+24\left(x-2\right)\)
\(=\left(x-2\right)\left[\left(3x^3+6x^2\right)+\left(12x+24\right)\right]\)
\(=\left(x-2\right)\left[3x^2\left(x+2\right)+12\left(x+2\right)\right]\)
\(=\left(x-2\right)\left(x+2\right)\left(3x^2+12\right)\)
\(x^4-8x\)
\(=x\left(x^3-8\right)\)
\(=x\left[\left(x^3-2x^2\right)+\left(2x^2-4x\right)+\left(4x-8\right)\right]\)
\(=x\left[x^2\left(x-2\right)+2x\left(x-2\right)+4\left(x-2\right)\right]\)
\(=x\left(x-2\right)\left(x^2+2x+4\right)\)