\(3x^2-13x+36\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2021

bằng phương thức nào bạn ?

 

30 tháng 9 2021

câu trả lời:

3x.x-13.x+62

14 tháng 3 2019

\(x^4+13x^2+36=x^4+4x^2+9x^2+36\)

\(=x^2\left(x^2+4\right)+9\left(x^2+4\right)=\left(x^2+9\right)\left(x^2+4\right)\)

14 tháng 3 2019

       \(x^4+13x^2+36\)

<=> \(x^4+9x^2+4x^2+36\)

<=> \(x^2\left(x^2+9\right)+4\left(x^2+9\right)\)

<=> \(\left(x^2+9\right)\left(x^2+4\right)\)

26 tháng 8 2020

Bài làm:

Ta có: \(3x^2+3x-6\)

\(=\left(3x^2+6x\right)-\left(3x+6\right)\)

\(=3x\left(x+2\right)-3\left(x+2\right)\)

\(=3\left(x-1\right)\left(x+2\right)\)

26 tháng 8 2020

\(3x^2+3x-6\)

\(=3\left(x^2+x-2\right)\)

\(=3\left(x^2+2x-x-2\right)\)

\(=3\left[x\left(x+2\right)-\left(x+2\right)\right]\)

\(=3\left(x-1\right)\left(x+2\right)\)

26 tháng 8 2020

Bài làm:

1) Ta có: \(2x^2+5xy+2y^2\)

\(=\left(2x^2+4xy\right)+\left(xy+2y^2\right)\)

\(=2x\left(x+2y\right)+y\left(x+2y\right)\)

\(=\left(2x+y\right)\left(x+2y\right)\)

2) Ta có: \(2x^2+2xy-4y^2\)

\(=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)\)

\(=2x\left(x-y\right)+4y\left(x-y\right)\)

\(=2\left(x+2y\right)\left(x-y\right)\)

26 tháng 8 2020

\(1)2x^2+5xy+2y^2=2x^2+4xy+xy+2y^2=\left(2x^2+4xy\right)+\left(xy+2y^2\right)=2x\left(x+2y\right)+y\left(x+2y\right)=\left(2x+y\right)\left(x+2y\right)\)\(2)2x^2+2xy-4y^2=2x^2+4xy-2xy-4y^2=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)=2x\left(x-y\right)+4y\left(x-y\right)=\left(2x+4y\right)\left(x-y\right)\)

26 tháng 8 2020

Sửa lại đề là: \(3x^2+10x+3\)

\(=3x^2+9x+x+3\)

\(=\left(3x^2+9x\right)+\left(x+3\right)\)

\(=3x.\left(x+3\right)+\left(x+3\right)\)

\(=\left(x+3\right).\left(3x+1\right)\)

26 tháng 8 2020

\(3x^2+10x+3\)

\(=3x^2+9x+x+3\)

\(=3x\left(x+3\right)+\left(x+3\right)\)

\(=\left(x+3\right)\left(3x+1\right)\)

2 tháng 7 2017

=x3(x+2)-13x2+12x-26x+24

=x3(x+2)-x(13x-12)-2(13x-12)

=x3(x+2)-(13x-12)(x+2)

=(x+2)(x3-x-12x+12)

(x+2)[(x2-1)-12(x-1)]

=(x+2)[x(x-1)(x+1)-12(x-1)]

=(x+2)(x-1)[x(x+1)-12]

=(x+2)(x-1)(x2+x-12)

=(x+2)(x-1)(x2-3x+4x-12)

=(x+2)(x-1)[x(x-3)+4(x+3)]

=(x+2)(x-1)(x-3)(x+4)

2 tháng 7 2017

trong bài làm của mk có hàng k có dấu "=" chỗ đó có dâu"=" nha!

27 tháng 10 2019

a) \(36-4x^2+4xy-y^2\)

\(=36-\left(2x-y\right)^2\)

\(=\left(6+2x-y\right)\left(6-2x+y\right)\)

b) \(2x^4+3x^2-5\)

\(=2x^4-2x^2+5x^2-5\)

\(=2x^2\left(x^2-1\right)+5\left(x^2-1\right)\)

\(=\left(2x^2+5\right)\left(x+1\right)\left(x-1\right)\)

27 tháng 10 2019

thank bn

26 tháng 8 2020

Bài làm:

Lớp 8 phân tích cái này thì hơi ngô khoai đấy cơ bằng đổi thành:

\(\orbr{\begin{cases}x^2-x-20\\x^2+x-20\end{cases}}\) thì còn dễ phân tích

Mạn phép sửa đề nhé:)

\(\orbr{\begin{cases}x^2-x-20\\x^2+x-20\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x^2+4x\right)-\left(5x+20\right)\\\left(x^2-4x\right)+\left(5x-20\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x+4\right)\left(x-5\right)\\\left(x-4\right)\left(x+5\right)\end{cases}}\)

Còn nếu như giữ nguyên đề thì phân tích không ra đâu nhé:)

26 tháng 8 2020

Nếu giữ nguyên thì ...

\(x^2+x+20\)

\(=\left(x^2+2\cdot\frac{1}{2}\cdot x+\frac{1}{4}\right)+\frac{79}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{79}{4}\ge\frac{79}{4}>0\forall x\)

> 0 thì lấy đâu ra nghiệm :)

26 tháng 8 2020

Bài làm:

Ta có: \(2x^2-3xy-2y^2\)

\(=\left(2x^2-4xy\right)+\left(xy-2y^2\right)\)

\(=2x\left(x-2y\right)+y\left(x-2y\right)\)

\(=\left(2x+y\right)\left(x-2y\right)\)

26 tháng 8 2020

\(2x^2-3xy-2y^2\)

\(=\left(2x^2-4xy\right)+\left(xy-2y^2\right)\)

\(=2x\left(x-2y\right)+y\left(x-2y\right)\)

\(=2x\left(x-2y\right)+y\left(x-2y\right)\)

2 tháng 11 2018

\(=x^2+x-3x-3.=x\times\left(x+1\right)-3\times\left(x+1\right)=\left(x+1\right).\left(x-3\right)\)

2 tháng 11 2018

\(x^2-2x-3\)

\(=x^2-3x+x-3\)

\(=x\left(x-3\right)+\left(x-3\right)\)

\(=\left(x-3\right)\left(x+1\right)\)