Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\sqrt{x}+4x-12\sqrt{x}-27\)
\(=\left(x\sqrt{x}-27\right)+\left(4x-12\sqrt{x}\right)\)
\(=\left(\sqrt{x}-3\right)\left(x+3\sqrt{x}+9\right)+4\sqrt{x}\left(\sqrt{x}-3\right)\)
\(=\left(\sqrt{x}-3\right)\left(x+3\sqrt{x}+9+4\sqrt{x}\right)\)
\(=\left(\sqrt{x}-3\right)\left(x+7\sqrt{x}+9\right)\)
a, \(\sqrt{a^2-b^2}-\sqrt{a^3+b^3}\)
\(=\sqrt{\left(a+b\right)\left(a-b\right)}-\sqrt{\left(a+b\right)\left(a^2-ab+b^2\right)}\)
\(=\sqrt{a+b}\left(\sqrt{a-b}-\sqrt{a^2-ab+b^2}\right)\)
1/ \(x-6\sqrt{x}-8=\left(\sqrt{x}-3+\sqrt{17}\right)\left(\sqrt{x}-3-\sqrt{17}\right)\)
2/ Bài này làm gì còn phân tích được nữa.
\(8-\frac{x\sqrt{x}}{3}\)
\(=8-\frac{\sqrt{x^3}}{3}\)
\(=8-\frac{\left(\sqrt{x}\right)^3}{3}\)
\(=8-\frac{\left(\sqrt{x}\right)^3}{\left(\sqrt[3]{3}\right)^3}\)
\(=2^3-\left(\frac{\sqrt{x}}{\sqrt[3]{3}}\right)^3\)
\(=\left(2-\frac{\sqrt{x}}{\sqrt[3]{3}}\right)\left(4+\frac{2\sqrt{x}}{\sqrt[3]{3}}+\frac{x}{\left(\sqrt[3]{3}\right)^2}\right)\)
\(ab+b\sqrt{a}+\sqrt{a}+1\)
(đk: \(a\ge0\))
\(=b\sqrt{a}\left(\sqrt{a}+1\right)+\sqrt{a}+1=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)
ĐK: \(x,y\ge0\)
\(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=x\left(\sqrt{x}+\sqrt{y}\right)-y\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)\left(x-y\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)^2\left(\sqrt{x}-\sqrt{y}\right)\)
\(\sqrt{21}+\sqrt{3}+\sqrt{7}+1\)
\(=\sqrt{3}\left(\sqrt{7}+1\right)+\left(\sqrt{7}+1\right)\)
\(=\left(\sqrt{7}+1\right)\left(\sqrt{3}+1\right)\)
\(\sqrt{1-a}+\sqrt{1-a^2}\)
\(=\sqrt{1-a}+\sqrt{\left(1-a\right)\left(1+a\right)}\)
\(=\sqrt{1-a}\left(1+\sqrt{1+a}\right)\)
A)=a+\(2\sqrt{a}+2\sqrt{a}\)+4
=\(\sqrt{a}\left(\sqrt{a}+2\right)+2\left(\sqrt{a}+2\right)=\left(\sqrt{a}+2\right)^2\)
b)= \(\left(a-\sqrt{7}\right)\left(a+\sqrt{7}\right)\)
c) \(\sqrt{a}\left(\sqrt{b}-4\right)+3\cdot\left(\sqrt{b}-4\right)=\left(\sqrt{a}+3\right)\left(\sqrt{b}-4\right)\)
alibaba nguyễn: Cái đó đúng là đa thức mà! Nhưng mà ko bt làm thôi à T_T!
Đặt: \(A=\sqrt{3+\sqrt{8}}\)
=> \(\sqrt{2}A=\sqrt{6+2\sqrt{8}}=\sqrt{\left(2+\sqrt{2}\right)^2}=2+\sqrt{2}=\sqrt{2}\left(\sqrt{2+1}\right)\)
=> \(A=\sqrt{2}+1\)
\(3+\sqrt{18}+\sqrt{3+\sqrt{8}}=3+3\sqrt{2}+\sqrt{2}+1\)
\(=3\left(\sqrt{2}+1\right)+\left(\sqrt{2}+1\right)=4.\left(\sqrt{2}+1\right)\)
dòng thứ 2 là \(\sqrt{2}\left(\sqrt{2}+1\right)\) nhé