K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2022

Trả lời:

\(2x^4-3x^3-7x^2+6x+8\)

\(=2x^4-4x^3+x^3-2x^2-5x^2+10x-4x+8\)

\(=\left(2x^4-4x^3\right)+\left(x^3-2x^2\right)-\left(5x^2-10x\right)-\left(4x-8\right)\)

\(=2x^3\left(x-2\right)+x^2\left(x-2\right)-5x\left(x-2\right)-4\left(x-2\right)\)

\(=\left(x-2\right)\left(2x^3+x^2-5x-4\right)\)

\(=\left(x-2\right)\left(2x^3+2x^2-x^2-x-4x-4\right)\)

\(=\left(x-2\right)\left[\left(2x^3+2x^2\right)-\left(x^2+x\right)-\left(4x+4\right)\right]\)

\(=\left(x-2\right)\left[2x^2\left(x+1\right)-x\left(x+1\right)-4\left(x+1\right)\right]\)

\(=\left(x-2\right)\left(x+1\right)\left(2x^2-x-4\right)\)

19 tháng 7 2017

\(=\left(x+1\right)\left(x-2\right)\left(2x^2-x-4\right)\)

22 tháng 9 2019

2x4 - 3x3 - 7x2 +6x+8

= 2x4 - 4x3 + x3 - 2x2 - 5x2 +10x - 4x +8

= 2x3.(x-2) +x2.(x-2) - 5x.(x-2) - 4.(x-2)

= (x-2).(2x3 +x2 - 5x -4)

= (x-2).(2x3 + 2x2 - x2 - x - 4x-4)

= (x-2).(x+2).(2x2 -x -4)

....

16 tháng 10 2018

        \(x^4+3x^2+36\)

\(=\left(x^2\right)^2+2.x^2.6+6^2-9x^2\)

\(=\left(x^2+6\right)^2-\left(3x\right)^2=\left(x^2-3x+6\right)\left(x^2+3x+6\right)\)

      \(2x^4-3x^3-7x^2+6x+8\)

\(=2x^4+2x^3-5x^3-5x^2-2x^2-2x+8x+8\)

\(=2x^3\left(x+1\right)-5x^2\left(x+1\right)-2x\left(x+1\right)+8\left(x+1\right)\)

\(=\left(x+1\right)\left(2x^3-5x^2-2x+8\right)\)

\(=\left(x+1\right)\left[2x^2\left(x-2\right)-x\left(x-2\right)-4\left(x-2\right)\right]\)

\(=\left(x+1\right)\left(x-2\right)\left(2x^2-x-4\right)\)

Chúc bạn học tốt.

23 tháng 7 2016

1/  \(2x^2+3x-5=\left(2x^2+2x\right)-\left(5x+5\right)=2x\left(x+1\right)-5\left(x+1\right)=\left(x+1\right)\left(2x-5\right)\)

2/ \(16x-5x^2-3=\left(15x-5x^2\right)+\left(x-3\right)=5x\left(3-x\right)-\left(3-x\right)=\left(3-x\right)\left(5x-1\right)\)

3/ \(7x-6x^2-2=\left(3x-6x^2\right)-\left(2-4x\right)=3x\left(1-2x\right)-2\left(1-2x\right)=\left(1-2x\right)\left(3x-2\right)\)

4/ \(x^2+5x-6=\left(x^2-x\right)+\left(6x-6\right)=x\left(x-1\right)+6\left(x-1\right)=\left(x-1\right)\left(x+6\right)\)

15 tháng 11 2016

\(2x^4+3x^3-7x^2-6x+8\)

\(=2x^4+5x^3-2x^2-8x-2x^3-5x^2+2x+8\)

\(=x\left(2x^3+5x^2-2x-8\right)-\left(2x^3+5x^2-2x-8\right)\)

\(=\left(x-1\right)\left(2x^3+5x^2-2x-8\right)\)

\(=\left(x-1\right)\left(2x^3+x^2-4x+4x^2+2x-8\right)\)

\(=\left(x-1\right)\left[x\left(2x^2+x-4\right)+2\left(2x^2+x-4\right)\right]\)

\(=\left(x-1\right)\left(x+2\right)\left(2x^2+x-4\right)\)

15 tháng 11 2016

vuivui cảm ơn

 

22 tháng 12 2021

\(a,=5x^2-5x+3x-3=\left(x-1\right)\left(5x+3\right)\\ b,=2x^2-5x+2x-5=\left(2x-5\right)\left(x+1\right)\\ c,=x^2+5x-3x-15=\left(x+5\right)\left(x-3\right)\\ d,=7x^2-7x+x-1=\left(x-1\right)\left(7x+1\right)\)

22 tháng 12 2021

c: =(x+5)(x-3)

d: =(x-1)(7x+1)

4 tháng 8 2016

2x2-3x-2

=2x2-4x+x-2

=2x.(x-2)+(x-2)

=(2x+1).(x-2)

4 tháng 9 2017

a) Đặt A=(x+2)(x+3)(x+4)(x+5)-24 
= (x+2)(x+5)(x+3)(x+4)-24 
= (x^2+7x+10)(x^2+7x+12)-24 
Đặt x^2+7x+11 = a thay vào A ta được : 
A=(a-1)(a+1)=a^2-25 = a^2 - 5^2 = (a-5)(a+5) ( 2) 
Thế a vào (2) ta được : 
A=(x^2+7x+11-5)(x^2+7x+11+5) 
= (x^2+7x+6)(x^2+7x+16) 

b)  = (x2+8x+7)(x2+8x+15)+15

        Đặt X=x2+8x+11

   f(x) = (X-4)(X+4)+15

         = X2-16+15

         = X2-12

         = (X-1)(X+1)

=> f(x)= (x2+8x+11-1)(x2+8x+11+1)

     f(x) = (x2+8x+10)(x2+8x+12)

Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:

     f(x) = (x2+8x+10)(x2+8x+12)

           = (x2+8x+10)[(x2+2x)+(6x+12)]

           = (x2+8x+10)[x(x+2)+6(x+2)]

           = (x+2)(x+6)(x2+8x+10)

   d)  2x4 - 3x3 - 7x2 + 6x + 8 = (x - 2)(2x3 + x2 - 5x - 4)

Ta lại có 2x3 + x2 - 5x - 4 là đa thức có tổng hệ số của các hạng tử bậc lẻ và bậc chẵn bằng nhau nên có một nhân tử là x+1  nên 2x3 + x2 - 5x - 4 = (x+1)(2x2-x-4)

Vậy 2x4 - 3x3 - 7x2 + 6x + 8  = (x-2)(x+1)(2x2-x-4)

4 tháng 9 2017

  a) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

 \(=\left[\left(x-1\right)\left(x+2\right)\right].\left[x\left(x+1\right)\right]=24\)

 \(=\left(x^2+2x-x-2\right)\left(x^2+x\right)=24\)

 \(=\left(x^2+x-2\right)\left(x^2+x\right)=24\)

 \(=\left[\left(x^2+x-1\right)-1\right].\left[\left(x^2+x-1\right)+1\right]=24\)

 \(=\left(x^2+x-1\right)^2-1=24\)

 \(=\left(x^2+x-1\right)^2=25\)

   xin lỗi mk chỉ làm được đến đây thôi cậu làm tiếp nhé