K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2021

hi

27 tháng 8 2021

sao bn ko viết cách làm ra cho mik bít lun

\(x^4+2x^3-4x-4\)

\(=\left(x^2-2\right)\left(x^2+2\right)-2x\left(x^2-2\right)\)

\(=\left(x^2-2\right)\left(x^2-2x+2\right)\)

25 tháng 9 2019

d) x4 + 2x3 - 4x – 4 = (x4 – 4) + (2x3 – 4x) = (x2 – 2)(x2 + 2) + 2x(x2 – 2)

= (x2 – 2)(x2 + 2 + 2x) = (x - √2)( x + √2)( x2 + 2 + 2x)

23 tháng 8 2017

mình lớp 6 ko biết dạng lớp 8

23 tháng 8 2017

Bài làm

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

a: \(50x^5-8x^3\)

\(=2x^3\left(25x^2-4\right)\)

\(=2x^3\left(5x-2\right)\left(5x+2\right)\)

b: \(x^4-5x^2-4y^2+10y\)

\(=\left(x^2-2y\right)\left(x^2+2y\right)-5\left(x^2-2y\right)\)

\(=\left(x^2-2y\right)\left(x^2+2y-5\right)\)

c: \(36a^2+12a+1-b^2\)

\(=\left(6a+1\right)^2-b^2\)

\(=\left(6a+1-b\right)\left(6a+1+b\right)\)

d: \(x^3+y^3-xy^2-x^2y\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-2xy+y^2\right)\)

\(=\left(x+y\right)\cdot\left(x-y\right)^2\)

e: Ta có: \(4x^2+4x-3\)

\(=4x^2+6x-2x-3\)

\(=2x\left(2x+3\right)-\left(2x+3\right)\)

\(=\left(2x+3\right)\left(2x-1\right)\)

f: Ta có: \(9x^4+16x^2-4\)

\(=9x^4+18x^2-2x^2-4\)

\(=9x^2\left(x^2+2\right)-2\left(x^2+2\right)\)

\(=\left(x^2+2\right)\left(9x^2-2\right)\)

g: Ta có: \(-6x^2+5xy+4y^2\)

\(=-6x^2+8xy-3xy+4y^2\)

\(=-2x\left(3x-4y\right)-y\left(3x-4y\right)\)

\(=\left(3x-4y\right)\left(-2x-y\right)\)

h: Ta có: \(\left(x^2+4x\right)^2+8\left(x^2+4x\right)+15\)

\(=\left(x^2+4x\right)^2+3\left(x^2+4x\right)+5\left(x^2+4x\right)+15\)

\(=\left(x^2+4x+3\right)\cdot\left(x^2+4x+5\right)\)

\(=\left(x+1\right)\left(x+3\right)\left(x^2+4x+5\right)\)

30 tháng 10 2016

Làm theo kiểu PP số 7 nhé bạn 

\(x^3-3x^2+4x-2\)

\(=x^3-x^2-2x^2+2x+2x-2\)

\(=x^2-\left(x-1\right)-2x\left(x-1\right)+2\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-2x+2\right)\)

30 tháng 10 2016

cái này hay nha

nhưng mik chỉ bik đáp án

\(=\left(x-1\right)\left(x^2-2x+2\right)\)

3 tháng 8 2018

\(x^3+4x^2+4x-16y^2\)

\(=\left(x^3+2x^2\right)+\left(2x^2+4x\right)-16y^2\)

\(=x^2.\left(x+2\right)+2x.\left(x+2\right)-16y^2\)

\(=\left(x+2\right).\left(x^2+2x\right)-16y^2\)

\(=x.\left(x+2\right).\left(x+2\right)-\left(4y\right)^2\)

\(=x.\left(x+2\right)^2-\left(4y\right)^2\)

\(=\left[\sqrt{x}.\left(x+2\right)\right]^2-4y^2\)

\(=\left[\sqrt{x}.\left(x+2\right)-4y\right].\left[\sqrt{x}.\left(x+2\right)+4y\right]\)

Tham khảo nhé~

22 tháng 5 2021

nếu đưa vô căn phải có điều kiện là x > 0

\(x^3+4x^2+4x-16y^2=x\left(x+2\right)^2-\left(4y\right)^2\)

\(=\left(x\sqrt{x}+2\sqrt{x}\right)^2-\left(4y\right)^2=\left(x\sqrt{x}+2\sqrt{x}-4y\right)\left(x\sqrt{x}+2\sqrt{x}+4y\right)\)

23 tháng 10 2017

Nếu ol thì tham khảo nah nguoiemtinhthong.

1.1

2x2+5x−1=7x3−1−−−−−√2x2+5x−1=7x3−1

⇔2(x2+x+1)+3(x−1)−7(x−1)(x2+x+1)−−−−−−−−−−−−−−−√(1)⇔2(x2+x+1)+3(x−1)−7(x−1)(x2+x+1)(1)

Đặt a=x−1−−−−−√;b=x2+x+1−−−−−−−−√;a≥0;b>0a=x−1;b=x2+x+1;a≥0;b>0

pt (1) trở thành 3a2+2b2−7ab=03a2+2b2−7ab=0

a=2ba=2b v a=13ba=13b

Các bạn tự giải quyết tiếp nhé.

1.2

TXĐ D=[1;+∞)D=[1;+∞)

đặt a=x−1−−−−−√4;b=x+1−−−−−√4;a,b≥0a=x−14;b=x+14;a,b≥0

pt (2) trở thành 3a2+2b2−5ab=03a2+2b2−5ab=0

⇔a=b⇔a=b v a=23ba=23b

...

1.3

D=[3;+∞)D=[3;+∞)

Đặt a=x2+4x−5−−−−−−−−−√;b=x−3−−−−−√;a,b≥0a=x2+4x−5;b=x−3;a,b≥0

pt (3) trở thành 3a+b=11a2−19b2−−−−−−−−−√3a+b=11a2−19b2

⇔2a2−6ab−20b2=0⇔2a2−6ab−20b2=0

⇒a=5b⇒a=5b
...

1.4

ĐK

⇔2x2−2x+2=3(x−2)x(x+1)−−−−−−−−−−−−√2x2−2x+2=3(x−2)x(x+1)

⇔(x2−2x)+2(x+1)=3(x2−2x)(x+1)−−−−−−−−−−−−−√2(x2−2x)+2(x+1)=3(x2−2x)(x+1)

Đặt x2−2x−−−−−−√=ax2−2x=a; x+1−−−−−√=bx+1=b (a;b\geq0)

⇔2a2+2b2=3ab

1.5

Đặt 4x2−4x−10=t4x2−4x−10=t (t \geq 0)

⇔t=t+4x2−2x−−−−−−−−−−√t=t+4x2−2x

⇔t2−t−4x2+2x=0t2−t−4x2+2x=0

Δ=1−4(2x−4x2)=(4x−1)2Δ=1−4(2x−4x2)=(4x−1)2

⇒t=1−2xt=1−2x hoặc t=2xt=2x

23 tháng 10 2017

1.1

2.2+5.-1=7.3-1-----v2.2+5.-1=7.3-1

2(.2+x+1)+3(x-1)

3a+b=11a2-19b2

tóm tắt

24 tháng 8 2018

\(4x^4-8x^3+3x^2-8x+4\)

\(=\left(4x^4-8x^3\right)+\left(3x^2-6x\right)-\left(2x-4\right)\)

\(=4x^3\left(x-2\right)+3x\left(x-2\right)-2\left(x-2\right)\)

\(=\left(x-2\right)\left(4x^3+3x-2\right)\)