K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2018

1) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt \(x^2+7x+11=a\), ta có:

\(=\left(a+1\right)\left(a-1\right)-24\)

\(=a^2-1-24\)

\(=a^2-25\)

\(=\left(a-5\right)\left(a+5\right)\)

\(=\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x^2+6x+x+6\right)\left(x^2+7x+16\right)\)

\(=\left[x\left(x+6\right)+\left(x+6\right)\right]\left(x^2+7x+16\right)\)

\(=\left(x+6\right)\left(x+1\right)\left(x^2+7x+16\right)\)

2) \(\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)

\(=\left(x^2+x\right)^2+2\left(x^2+x\right).2+4-4-12\)

\(=\left(x^2+x+2\right)^2-16\)

\(=\left(x^2+x+2\right)^2-4^2\)

\(=\left(x^2+x+2-4\right)\left(x^2+x+2+4\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x+6\right)\)

3) \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

Đặt \(x^2+x+1=a\), ta được

\(=a\left(a+1\right)-12\)

\(=a^2+a-12\)

\(=a^2+2.a.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}-12\)

\(=\left(a+\dfrac{1}{2}\right)^2-\dfrac{49}{4}\)

\(=\left(a+\dfrac{1}{2}\right)^2-\left(\dfrac{7}{2}\right)^2\)

\(=\left(a+\dfrac{1}{2}-\dfrac{7}{2}\right)\left(a+\dfrac{1}{2}+\dfrac{7}{2}\right)\)

\(=\left(a-3\right)\left(a+4\right)\)

\(=\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x+5\right)\)

4) \(\left(a^2-4\right)\left(a^2+6a+5\right)\)

\(=\left(a-2\right)\left(a+2\right)\left(a^2+5a+a+5\right)\)

\(=\left(a-2\right)\left(a+2\right)\left[a\left(a+5\right)+\left(a+5\right)\right]\)

\(=\left(a-2\right)\left(a+2\right)\left(a+5\right)\left(a+1\right)\)

10 tháng 9 2018

1/(x+2)(x+3)(x+4)(x+5)-24

=(x+2)(x+5)(x+3)(x+4)

=(x+2)(x-2+7)(x+3)(x-3+7)

=[(x+2)(x-2)+7x+14][(x+3)(x-3)+7x+21]

=(x2-4+7x+14)(x2-9+7x+21)

=(x2+10+7x)(x2+12+7x)

2/(x2+x)2+4(x2+x)-12

=(x2+x)2+4(x2+x)+22-16

=(x2+x+2)2-42

=(x2+x+2+4)(x2+x+2-4)

=(x2+x+6)(x2+x-2)

3/(x2+x+1)(x2+x+2)-12

=(x2+x+1)(x2+x+-1+3)-12

=(x2+x+1)(x2+x+-1)+3(x2+x+1)-12

=(x2+x)-1+3(x2+x)+3-12

=(x2+x)(x2+x+3)-10

làm đến đây thì mk bí, bạn giúp suy nghĩ nốt nha

4/nó là nhân tử sẵn rồi mà


 

\(3/\)

\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

\(=\left(x^2+x+1\right)\left(x^2+x+1+1\right)-12\)

\(=\left(x^2+x+1\right)^2+x^2+x+1-12\)

\(=\left(x^2+x+1\right)^2+4\left(x^2+x+1\right)-3\left(x^2+x+1\right)-12\)

\(=\left(x^2+x+1\right)\left(x^2+x+1+4\right)-3\left(x^2+x+1+4\right)\)

\(=\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x+5\right)\)

21 tháng 9 2019

a/\(\left(x^2-x\right)^2+4\left(x^2-x\right)-12.\)

cho \(\left(x^2-x\right)=a\)

\(\Rightarrow a^2+4a-12\)

\(=a^2+6a-2a-12\)

\(=\left(a^2+6a\right)-\left(2a+12\right)\)

\(=a\left(a+6\right)-2\left(a+6\right)\)

\(=\left(a+6\right)\left(a-2\right)\)

\(=\left(x^2-x+6\right)\left(x^2-x-2\right)\)

b/ \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24\)

\(=\left(x^2+4x+x+4\right)\left(x^2+3x+2x+6\right)-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)

Gọi \(x^2+5x+5=a\)

\(\Rightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=\left(a-1\right)\left(a+1\right)-24\)

                                                                                 \(=a^2-1-24\)

                                                                                \(=a^2-25\)

                                                                                \(=\left(a-5\right)\left(a+5\right)\)

                                                                               \(\Rightarrow\left(x^2+5x+5-5\right)\left(x^2+5x+5+5\right)\)

                                                                                \(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)

\(\Rightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)

6 tháng 10 2019

\(x^8+x^7+1\)

\(=x^8+x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-xx+1\)

\(=\left(x^8-x^6+x^5-x^3+x^2\right)\)

\(+\left(x^7-x^5+x^4-x^2+x\right)\)

\(+\left(x^6-x^4+x^3-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

6 tháng 10 2019

\(x^5+x+1\)

\(=x^5-x^2+x^2+x+1\)

\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

14 tháng 11 2019

a) đề thế này\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)(1)

Đặt \(x^2+7x+11=t\)vào (1) ta được:

\(\left(t-1\right)\left(t+1\right)-24\)

\(=t^2-1-24\)

\(=t^2-25\)

\(=\left(t-5\right)\left(t+5\right)\)Thay \(t=x^2+7x+11\)ta được:
\(\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x^2+x+6x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

b) Phân tích sẵn rồi còn phân tích gì nưa=))

14 tháng 11 2019

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)( Làm đề theo Lê Tài Bảo Châu )

\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left[\left(x^2+7x+11\right)-1\right]\left[\left(x^2+7x+11\right)+1\right]-24\)

\(=\left(x^2+7x+11\right)^2-1-24\)

\(=\left(x^2+7x+11\right)^2-25\)

\(=\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x^2+x+6x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

21 tháng 7 2016

d ) 

=(x2-3x)(x2-3x+2)-24

đặt x2-3x+1=a ta đc 

(a-1)(a+1)-24

=a2-1-24=a2-25

=(a-5)(a+5)

=(x2-3x+1+5)(x2-3x+1-5)

=(x2-3x+6)(x2-3x-4)

=(x2-3x+6)(x2-4x+x-4)

=(x2-3x+1)[x(x-4)+(x-4)]

=(x-4)(x+1)(x2-3x+1)

mấy câu kia làm tương tự nhé 

2 tháng 10 2018

      \(27x^3-27x^2+18x-4\)

\(=27x^3-9x^2-18x^2+6x+12x-4\)

\(=9x\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)

\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)

       \(x^2+2xy+y^2-x-y-12\)

\(=\left(x+y\right)^2-\left(x+y\right)-12\)

\(=\left(x+y\right)^2-4\left(x+y\right)+3\left(x+y\right)-12\)

\(=\left(x+y\right)\left(x+y-4\right)+3\left(x+y-4\right)=\left(x+y+3\right)\left(x+y-4\right)\)  \(P=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

   \(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\) (nhóm 2 cái đầu với cuối lại với nhau, 2 cái giữa vào 1 nhóm)

Đặt \(x^2+7x+11=a\)

Ta có: \(P=\left(a-1\right)\left(a+1\right)-24\)

\(=a^2-25=\left(a-5\right)\left(a+5\right)\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

d,   \(4x^4-32x^2+1\)

\(=4x^4+4x^2+1-36x^2\)

\(=\left(2x+1\right)^2-\left(6x\right)^2=\left(2x^2-6x+1\right)\left(2x^2+6x+1\right)\)

17 tháng 3 2020

a, b, c, bằng cái mả bố nhà mày.