\(x^4+2008x^2+2007x+2008\)

2)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017

1. x4 + 2008x2 + 2007x + 2008

= (x4 + x2 + 1) + (2007x2 + 2007x + 1)

= (x2 + x + 1)(x2 - x + 1) + 2007(x2 + x + 1)

= (x2 + x + 1)(x2 - x + 2008)

2. x4 - 6x3 + 12x2 - 14x - 3

= x4 - 2x3 + 3x2 - 4x3 + 8x2 - 12x + x2 - 2x + 3

= x2(x2 - 2x + 3) - 4x(x2 - 2x + 3) + (x2 - 2x + 3)

= (x2 - 2x + 3)(x2 - 4x + 1)

23 tháng 10 2018

bn ơi dòng 2 phải là (x4 + x2 + 1) + (2007x2 + 2007x + 2007 ) ms đúng

24 tháng 3 2019

a)\(x^8+2x^4+1-x^4=\left(x^4+1\right)^2-\left(x^2\right)^2\)

\(=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\)

\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)

24 tháng 3 2019

\(=\left(x^4+x^3+x^2\right)-\left(x^3-2007x^2-2007x-2008\right)\)

\(=x^2\left(x^2+x+1\right)-\left[x\left(x^2+x+1\right)-2008\left(x^2-x-1\right)\right]\)

\(=x^2\left(x^2+x+1\right)-\left(x^2+x+1\right)\left(x-2008\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)

30 tháng 5 2017

giải phương trình:

  1. Nếu \(x\ge1\)phương trình trở thành : \(x^2-3x+2=x-1\Leftrightarrow x^2-4x+3=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}TM}\)
  2. Nếu \(x< 1\)\(\Rightarrow x^2-3x+2=1-x\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1L\)VẬY NGHIỆM PHƯƠNG TRÌNH LÀ : x=1 hoặc x=3
30 tháng 5 2017

   \(x^4+2008x^2+2007x+2008\)

\(=x\left[x\left(x^2+2008\right)+2007\right]+2008\)

\(=\left[\left(x-1\right)x+2008\right]\left(x^2+x+1\right)\)

\(=\left(x^2-x+2008\right)\left(x^2+x+1\right)\)

~(‾▿‾~)

23 tháng 12 2016

a, \(x^4+6x^3+7x^2-6x+1\)

\(=x^4-2x^2+1+6x^3+9x^2+6x\)

\(=\left(x^2-1\right)^2+6x\left(x^2-1\right)+9x^2\)

\(=\left(x^2-1+3x\right)^2\)

b, \(x^4-7x^3+14x^2-7x+1\)

\(=x^4+2x^2+1+7x^3+12x^2-7x\)

\(=\left(x^2+1\right)^2-7x\left(x^2+1\right)+12^2\)

\(=\left(x^2-1+3x\right)^2\)

c, \(12x^2-11x-36\)

\(=12x^2-27x+16x-36\)

\(=3x\left(4x-9\right)+4\left(4x-9\right)\)

\(=\left(4x-9\right)\left(3x+4\right)\)

1 tháng 6 2021

a.\(x^2+7x+6\)

\(=x^2+x+6x+6\)

\(=x\left(x+1\right)+6\left(x+1\right)\)

\(=\left(x+1\right)\left(x+6\right)\)

Sửa đề:.\(x^4+2008x^2+2007x+2008\)

\(=x^4+x^2+1+2007x^2+2007x+2007\)

\(=\left(x^4+x^2+1\right)+2007\left(x^2+x+1\right)\)

\(=\left(x^4+x^3+x^2-x^3-x^2-x+x^2+x+1\right)+2007\left(x^2+x+1\right)\)

\(=\left[x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\right]+2007\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+1\right)+2007\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)

1 tháng 6 2021

Trả lời:

a, x2 + 7x + 6

= x2 + x + 6x + 6

= ( x2 + x ) + ( 6x + 6 )

= x ( x + 1 ) + 6 ( x + 1 )

= ( x + 6 ) ( x + 1 )

1 tháng 12 2017

a.\(2x^2-5x-7\)

\(=2x^2-7x+2x-7\)

\(=\left(2x^2+2x\right)+\left(-7x-7\right)\)

\(=2x\left(x+1\right)-7\left(x+1\right)\)

\(=\left(2x-7\right)\left(x+1\right)\)

1 tháng 12 2017

a)\(2x^2-5x-7\)

\(=\left(2x^2+2x\right)-\left(7x+7\right)\)

\(=\left(x+1\right)\left(2x-7\right)\)

b) \(x^3-5x^2+8x-4\)

\(=\left(x^3-x^2\right)-\left(4x^2-4x\right)+\left(4x-4\right)\)

\(=\left(x-1\right)\left(x^2-4x+4\right)\)

\(=\left(x-1\right)\left(x-2\right)^2\)

c)\(x^4+2008x^2+2007x+2008\)

\(=\left(x^4-x^3+2008x^2\right)+\left(x^3-x^2+2008x\right)+\left(x^2-x+2008\right)\)

\(=\left(x^2-x+2008\right)\left(x^2+x+1\right)\)

8 tháng 6 2019

HIHI, bài này thì bó tay lẫn cả chân

Vì mới học xong lớp 6 hoi.

Học tốt nha, nếu ko ai giải thì thử vào câu hỏi tương tự thử 

Nha, học tốt !

#)Giải:

-Không sao mình biết cách làm mà, mình chỉ thử lòng ae thui !

29 tháng 8 2018

mk viết đáp án, ko biết biến đổi ib mk

a)  \(x^3+3x^2y-9xy^2+5y^3=\left(x+5y\right)\left(x-y\right)^2\)

b)    \(x^4+x^3+6x^2+5x+5=\left(x^2+5\right)\left(x^2+x+1\right)\)

c)   \(x^4-2x^3-12x^2+12x+36=\left(x^2-6\right)\left(x^2-2x-6\right)\)

d)   \(x^8y^8+x^4y^4+1=\left(x^2y^2-xy+1\right)\left(x^2y^2+xy+1\right)\left(x^4y^4-x^2y^2+1\right)\)

23 tháng 3 2019

\(x^8+x^4+1\)

\(=\left(x^4\right)^2+2.x^4+1-x^4\)

\(=\left(x^4+1\right)-\left(x^2\right)^2\)

\(=\left(x^4+1-x^2\right)\left(x^4+x^2+1\right)\)

\(=\left(x^4+1-x^2\right)\left[\left(x^2\right)^2+2x^2+1-x^2\right]\)

\(=\left(x^4+1-x^2\right)\left[\left(x^2+1^2\right)-x^2\right]\)

\(=\left(x^4+1-x^2\right)\left(x^2+x+1\right)\left(x^2-x+1\right)\)

\(x^4+2008x^2+2007x+2008\)

\(=\left(x^4-x\right)+2008\left(x^2+x+1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)+2008\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x-1+2008\right)\)

\(=\left(x^2+x+1\right)\left(x+2007\right)\)