Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích đa thức thành nhân tử:
a) (x-1)(x-2)(x-3)(x-4)+1
b) (x2+3x+2)(x2+7x+12)+1
c) 12x2-3xy-8xz+2yz
a) \(A=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)+1\)
\(A=\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]+1\)
\(A=\left(x^2-5x+4\right)\left(x^2-5x+6\right)+1\)
Đặt \(a=x^2-5x+5\)
\(\Leftrightarrow A=\left(a-1\right)\left(a+1\right)+1\)
\(\Leftrightarrow A=a^2-1^2+1\)
\(\Leftrightarrow A=a^2\)
Thay \(a=x^2-5x+5\)vào A ta có :
\(A=\left(x^2-5x+5\right)^2\)
b) \(B=\left(x^2+3x+2\right)\left(x^2+7x+12\right)+1\)
\(B=\left(x^2+x+2x+2\right)\left(x^2+3x+4x+12\right)+1\)
\(B=\left[x\left(x+1\right)+2\left(x+1\right)\right]\left[x\left(x+3\right)+4\left(x+3\right)\right]+1\)
\(B=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
Làm tương tự câu a)
c) \(12x^2-3xy-8xz+2yz\)
\(=3x\left(4x-y\right)-2z\left(4x-y\right)\)
\(=\left(4x-y\right)\left(3x-2z\right)\)
Đặt \(P=y^2+3xy-12x^2\)
\(4P=\left[\left(2y\right)^2+2.2.3xy+\left(3x\right)^2\right]-57x^2\)
\(4P=\left(2y+3x\right)^2-\left(\sqrt{57}x\right)^2\)
\(4P=\left(2y+3x-\sqrt{57}x\right).\left(2y+3x+\sqrt{57}x\right)\)
\(P=\frac{1}{4}.\left(2y+3x-\sqrt{57}x\right).\left(2y+3x+\sqrt{57}x\right)\)
Tham khảo nhé~
a, \(12x^2-3xy-8xz+2yz=3x\left(4x-y\right)-2z\left(4x-y\right)=\left(4x-y\right)\left(3x-2z\right)\)
b: =(x^2+x)^2+3(x^2+x)+2-12
=(x^2+x)^2+3(x^2+x)-10
=(x^2+x+5)(x^2+x-2)
=(x^2+x+5)(x+2)(x-1)
a, ( 2x - 1)^2 - (4x + 2) ^2 = ( 2x - 1 - 4x- 2) ( 2x - 1 + 4x + 2) = (-2x-3)(6x+1) = - (2x+3)(6x+1)
b, 8x^3 + 12x^2y + 6xy^2 + y^3
= (2x)^2 + 3.(2x)^2 . y + 3.2x.y^2 + y^3
= (2x + y)^3
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
a) \(4x^2-8x+4-9\left(x-y\right)^2\)
\(=4\left(x^2-2x+1\right)-9\left(x-y\right)^2\)
\(=\left[2\left(x-1\right)\right]^2-\left[3\left(x-y\right)\right]^2\)
\(=\left(2x-2+3x-3y\right)\left(2x-2-3x+3y\right)\)
\(=\left(5x-3y-2\right)\left(3y-x-2\right)\)
b) \(x^3-4x^2+12x-27\)
\(=\left(x^3-27\right)-\left(4x^2-12x\right)\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
a)
\(4x^2-9y^2+6x-9y=\left(2x-3y\right)\left(2x+3\right)+3\left(2x-3y\right)\)
\(=\left(2x-3y\right)\left(2x+3y+3\right)\)
b)
\(1-2x+2yz+x^2-y^2-z^2=\left(x^2-2x+1\right)-\left(y^2-2yz+z^2\right)\) (đổi dấu)
\(=\left(x-1\right)^2-\left(y-z\right)^2\)
c)
\(x^3-1+5x^2-5+3x-3=\left(x-1\right)\left(x^2+x+1\right)+5\left(x-1\right)\left(x+1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1+5\left(x+1\right)+3\right)\)
\(=\left(x-1\right)\left(x^2+x+1+5x+5+3\right)\)
\(=\left(x-1\right)\left(x^2+6x+9\right)=\left(x-1\right)\left(x+3\right)^2\)
a) \(3xy^2-12xy+12x\)
\(=3x\left(y-4y+4\right)\)
b) \(3x^3y-6x^2y-3xy^3-6axy^2-3a^2xy+3xy\)
\(=3xy\left(x^2-2x-y^2-2ay-a^2+1\right)\)
\(=3xy\left[\left(x^2-2\cdot x\cdot1+1^2\right)-\left(y^2+2\cdot y\cdot a+a^2\right)\right]\)
\(=3xy\left[\left(x-1\right)^2-\left(y+a\right)^2\right]\)
\(=3xy\left(x-1-y-a\right)\left(x-1+y+a\right)\)
c) \(36-4a^2+20ab-25b^2\)
\(=6^2-\left[\left(2a\right)^2-2\cdot2a\cdot5b+\left(5b\right)^2\right]\)
\(=6^2-\left(2a-5b\right)^2\)
\(=\left(6-2a+5b\right)\left(6+2a-5b\right)\)
d) \(5a^3-10a^2b+5ab^2-10a+10b\)
\(=5a\left(a^2-2ab+b^2\right)-10\left(a-b\right)\)
\(=5a\left(a-b\right)^2-10\left(a-b\right)\)
\(=\left(a-b\right)\left[5a\left(a-b\right)-10\right]\)
\(=5\left(a-b\right)\left[a\left(a-b\right)-2\right]\)
\(=5\left(a-b\right)\left(a^2-ab-2\right)\)
a. 3xy2-12xy+12x
= 3x(y2-4y+4)
= 3x(y-2)2
b. 3x3y-6x2y-3xy3-6axy2-3a2xy+3xy
= 3xy( x2-2x-y2-2ay-a2+1)
= 3xy ((x2-2x+1)-(a2-2ay-y2))
=3xy((x-1)2-(a-y)2)
= 3xy((x-1+a-y)(x-1-(a-y))
=3xy(x-1+a-y)(x-1-a+y)
d. =( 5a(a2-2ab+b2))-(10(a+b))
= 5a(a-b)2-10(a-b)
=5a(a-b)(a-b)-10(a-b)
=(a-b)(5a(a-b)-10)
Hình như mik làm sai hết rồi
\(x^2-y^2+4x+4\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2+y\right)\left(x+2-y\right)\)
\(4x^2-y^2+8\left(y-2\right)\)
\(=4x^2-\left(y^2-8y+16\right)\)
\(=4x^2-\left(y-4\right)^2\)
\(=\left(2x+y-4\right)\left(2x-y+4\right)\)
1. 12x\(^2\) - 3xy + 8xz - 2yz
= ( 12x\(^2\) - 3xy ) + ( 8xz - 2yz )
= 3x(4x - y) + 2z(4x - y)
= (4x - y)(3x+2z)
2. 4x\(^2\) - y\(^2\) +8(y-2)
= 4x\(^2\) - y\(^2\) + 8y -16
= 4x\(^2\) - ( y\(^2\) - 8y + 16)
= 4x\(^2\) - ( y - 4 )\(^2\)
= (2x-y+4)(2x+y-4)