K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

Thêm bớt hạng tử thôi:

\(x^3+3xy+y^3-1\)

\(=\left(x^3+3x^2y+3xy^2+y^3-1\right)-3x^2y-3xy^2+3xy\)

\(=\left[\left(x+y\right)^3-1^3\right]-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)

\(=\left(x+y-1\right)\left(x^2-xy+y^2+x+y+1\right)\)

22 tháng 10 2016

Có phải đề như thế này không bạn

\(x^3+3xy+y^3-1\)

\(=\left(x+y\right)^3-1+3xy-3xy\left(x+y\right)\)

\(=\left(x+y-1\right)\left(x^2+y^2+2xy+x+y+1\right)-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+y^2+2xy+x+y+1-3xy\right)\)

\(=\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)\)

19 tháng 10 2016

đề này sai phân tích kiểu mồ

10 tháng 3 2021

a) x3 + y3 - 3xy + 1

= ( x + y )3 - 3xy( x + y ) - 3xy + 1 

= [ ( x + y )3 + 1 ] - [ 3xy( x + y ) + 3xy ]

= ( x + y + 1 )( x2 + 2xy + y2 - x - y + 1 ) - 3xy( x + y + 1 )

= ( x + y + 1 )( x2 - xy + y2 - x - y + 1 )

b) ( 4 - x )5 + ( x - 2 )5 - 32

= [ -( x - 4 ) ]5 + ( x - 2 )5 - 32

Đặt t = x - 3

đthức <=> ( 1 - t )5 + ( 1 + t )5 - 32 ( chỗ này bạn dùng nhị thức Newton để khai triển nhé )

= 10t4 + 20t2 - 30

Đặt y = t2

đthức = 10y2 + 20y - 30

= 10y2 - 10y + 30y - 30

= 10y( y - 1 ) + 30( y - 1 )

= 10( y - 1 )( y + 3 )

= 10( t2 - 1 )( t2 + 3 )

= 10( t - 1 )( t + 1 )( t2 + 3 )

= 10( x - 3 - 1 )( x - 3 + 1 )[ ( x - 3 )2 + 3 ]

= 10( x - 4 )( x - 2 )( x2 - 6x + 12 )

10 tháng 3 2021

a,\(x^3+y^3-3xy+1\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)+1-3x^2y-3xy^2-3xy\)

\(=\left[\left(x+y\right)^3+1\right]-3xy\left(x+y+1\right)\)

\(=\left(x+y+1\right)\left[\left(x+y\right)^2-\left(x+y\right)+1\right]-3xy\left(x+y+1\right)\)

\(=\left(x+y+1\right)\left(x^2+2xy+y^2-x-y+1-3xy\right)\)

\(=\left(x+y+1\right)\left(x^2+y^2-xy-x-y+1\right)\)

23 tháng 7 2016

\(x^3+3x^2y+3xy^2+y^3-x-y=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]=\left(x+y\right)\left(x+y+1\right)\left(x+y-1\right)\)

23 tháng 7 2016

Ta có : \(x^3+3x^2y+3xy^2+y^3-x-y.\)

\(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)

\(=xy\left(x^2-3x+3y-y^2\right)\)

\(=xy\left[\left(x-y\right)\left(x+y\right)+3\left(x-y\right)\right]\)

\(=xy\left(x-y\right)\left(x+y+3\right)\)

\(Ht\)

nếu sai cho mik xl vì mik chx thành thục cái này

24 tháng 7 2016

b) =x3+8x-9

=x3-x2+x2-x+9x-9

=x2(x+1)+x(x+1)+9(x+1)

=(x+1)(x2+x+9)

24 tháng 7 2016

\(=\left[\left(x+y\right)^3-1\right]-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left[\left(x+y\right)^2+1+2\left(x+y\right)\right]-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+y^2+2xy+1+2x+2y-3xy\right)\)

\(=\left(x+y+1\right)\left(x^2+y^2-xy+1+2x+2y\right)\)

\(=\left(x+y-1\right)\left[\left(x^2+1+2x\right)\left(y^2-xy+2y\right)\right]\)

\(=\left(x+y-1\right)\left(x+1\right)^2\left(y-x+2\right)y\)

13 tháng 8 2020

a,\(\frac{1}{5}x^2y\left(15xy^2-5y+3xy\right)=3x^3y^3-x^2y^2+\frac{3}{5}x^3y^2\)

b,\(5x^3-5x=5x\left(x^2-1\right)=5x\left(x-1\right)\left(x+1\right)\)

c, \(3x^2+5y-3xy-5x=3x\left(x-y\right)-5\left(x-y\right)\)

\(=\left(3x-5\right)\left(x-y\right)\)

13 tháng 8 2020

1) 1/5x2y( 15xy2 - 5y + 3xy ) = 3x3y3 - x2y2 + 3/5x3y2

2) a) 5x3 - 5x = 5x( x2 - 1 ) = 5x( x2 - 12 ) = 5x( x - 1 )( x + 1 )

b) 3x2 + 5y - 3xy - 5x = ( 3x2 - 3xy ) + ( 5y - 5x )

                                  = 3x( x - y ) + 5( y - x )

                                  = 3x( x - y ) + 5[ -( x - y ) ]

                                  = 3x( x - y ) - 5( x - y )

                                  = ( 3x - 5 )( x - y )