Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+2002x^2+2001x+2002\)
\(=x^4+x^2+1+2001x^2+2001x+2001\)
\(=\left(x^4+2x^2+1\right)-x^2+2001\left(x^2+x+1\right)\)
\(=\left(x^2+1-x\right)\left(x^2+1+x\right)+2001\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2+1-x+2001\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2002\right)\)
\(x^4+2007x^2-2006x+2007\)
\(=x^4+2x^2+1-x^2+2006\left(x^2-x+1\right)\)
\(=\left(x^2+1\right)^2-x^2+2006\left(x^2-x+1\right)\)
\(=\left(x^2+1+x\right)\left(x^2+1-x\right)+2006\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x+1+2006\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x+2007\right)\)
81x4+4
=(9x2)2+22
=(9x2)2+36x2+22-36x2
=(9x2+2)2-(6x)2
=(9x2+2-6x)(9x2+2+6x)
Cái đề này hợp lí hơn
a(b-c)2+b(c-a)2+c(a-b)2-a3-b3-c3+3abc
a) \(x^2-9x+14\)
\(=x^2-2x-7x+14\)
\(=x\left(x-2\right)-7\left(x-2\right)\)
\(=\left(x-2\right)\left(x-7\right)\)
b) \(x^2+17x-18\)
\(=x^2+18x-x-18\)
\(=x\left(x+18\right)-\left(x+18\right)\)
\(=\left(x+18\right)\left(x-1\right)\)
c) \(2x^2-7x+3\)
\(=2x^2-x-6x+3\)
\(=x\left(2x-1\right)-3\left(2x-1\right)\)
\(=\left(2x-1\right)\left(x-3\right)\)
d) \(x^2-25x+144\)
\(=x^2-9x-16x+144\)
\(=x\left(x-9\right)-15\left(x-9\right)\)
\(=\left(x-9\right)\left(x-15\right)\)
b) x2 - 2x - 4y2 - 4y
= x2 - 2x + 1 - 4y2 - 4y - 1
= ( x - 1 )2 - [ ( 2y )2 + 2.2.y + 1 ]
= ( x - 1 )2 - ( 2y + 1 )2
= ( x - 1 + 2y + 1 ).( x - 1 - 2y - 1 )
= ( x + 2y ).( x - 2y - 2 )
Bài làm
a) xz - yz - x2 + 2xy - y2
= ( xz - yz ) - ( x2 - 2xy + y2 )
= z( x - y ) - ( x - y )2
= ( x - y )( z - x + y )
b) x2 - 2x - 4y2 - 4y
= x2 - 2x - 4y2 - 4y + 1 - 1
= ( x2 - 2x + 1 ) - ( 4y2 + 4y + 1 )
= ( x - 1 )2 - ( 2y + 1 )2
= ( x - 1 - 2y - 1 )( x - 1 + 2y + 1 )
= ( x - 2y - 2 )( x + 2y )
# Học tốt #
Đặt x^2 + x = t
=> D = 2 ( t - 5 )^2 - 5t + 28
=> D = 2 ( t^2 - 10t + 25 ) - 5t + 28
=> D =2t^2 - 20t + 25 - 5t + 28
=> D = 2t^2 - 25t + 53
ĐẾn đây tự phân tích
\(\left(x^2-5\right)^2+144\)
\(=x^4-10x^2+25+144\)
\(=x^4-10x^2+169\)
\(=x^4+26x^2+169-36x^2\)
\(=\left(x^2+13\right)^2-\left(6x\right)^2\)
\(=\left(x^2-6x+13\right)\left(x^2+6x+13\right)\)