Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab(b - a) - bc(b - c) - ac(c - a)
= ab2 - a2b - b2c + bc2 + ac(a - c)
= b2(a - c) - b(a2 - c2) + ac(a - c)
= b2(a - c) - b(a - c)(a + c) + ac(a - c)
= (b2 - ab - bc + ac)(a - c)
= [b(b - a) - c(b - a)](a - c)
= (b - c)(b -a)(a - c)
\(a,\)Mình làm theo kiểu lược đồ
Nhẩm nghiệm của đa thức trên ta đc : 2
Có lược đồ sau :(dòng trên ghi các hệ số)
1 | -2 | -6 | 12 | |
2 | 1 | 0 | -6 | 0 |
Ta phân tích đc thành :\(\left(x-2\right)\left(x^2-6\right)\)
\(c,x^2-5x+4\)
\(=x^2-4x-x+4\)
\(=x\left(x-4\right)-\left(x-4\right)\)
\(=\left(x-1\right)\left(x-4\right)\)
\(d,3x^2+5x+2\)
\(=3x^2+3x+2x+2\)
\(=3x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(3x+2\right)\)
\(e,x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+y^3\right)+3xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x^2-xy+y^2\right)+3xy-1\right]\)
\(x^3-2x^2-6x+12\)
\(=x^2.\left(x-2\right)-6\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-6\right)\)
\(x^4-7x^2+12\)
\(=\left[\left(x^2\right)^2-2.3,5x+3,5^2\right]-0,25\)
\(=\left(x^2-3,5\right)^2-0,5^2\)
\(=\left(x^2-3,5-0,5\right)\left(x^2-3,5+0,5\right)\)
\(=\left(x^2-4\right)\left(x^2-3\right)\)
Câu c tương tự câu b
Ban tham khao:
Câu hỏi của Trần Thiện Khiêm - Toán lớp 8 - Học toán với OnlineMath
a) a^2 (x-y) +y-x
= a^2 (x-y) -(x-y)
= (x-y) (a^2 -1)
= (x-y)(a-1)(a+1)
b) m^2 -25y^2+10y -1
= m^2 -(25y^2 -10y +1)
= m^2-(5y-1)^2
=(m-5y+1)(m+5y-1)
c) a^2 -4x^2 +8x -4
= a^2 -(4x^2 -8x+4)
=a^2 -( 2x-2)^2
=(a-2x+2)(a+2x-2)
cái này là toán mà
mink ấn nhầm bạn ạ