\(x\left(x+4\right)\left(x+6\right)\left(x+10\right)+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

      \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+18\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)-16\)

\(=\left(x^2+10x+20\right)^2-16+16=\left(x^2+10x+20\right)^2\)

Chúc bạn học tốt.

23 tháng 10 2019

      \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)


\(\Rightarrow\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+6\right)\left(x+8\right)\right]+16\)

\(\Rightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(\Rightarrow\left(x^2+10x+16\right)\left[\left(x^2+10x+16\right)+8\right]+16\)

\(\Rightarrow\left(x^2+10x+16\right)^2+8\left(x^2+10x+16\right)+4^2\)

\(\Rightarrow\left(x^2+10x+20\right)^2\)

2 tháng 8 2016

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+8x+2x+16\right)\left(x^2+6x+4x+24\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10+16+8\right)+16\)

\(=\left(x^2+10x+16\right)^2+2.\left(x^2+10x+16\right).4+4^2\)

\(=\left(x^2+10x+16+4\right)^2\)

\(=\left(x^2+10+20\right)^2\)

 

2 tháng 8 2016

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+16\)
\(=\left(x^2+8x+2x+16\right) \left(x^2+6x+4x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\left(1\right)\)
\(\text{Đặt }x^2+10x+\frac{16+24}{2}=t\)
\(\text{hay }x^2+10x+20=t\)
\(\left(1\right)\Rightarrow\left(t-4\right)\left(t+4\right)+16\)
\(=t^2-4^2+16\)
\(=t^2-16+16\)
\(=t^2\)
\(=\left(x^2+10x+20\right)^2\)
 

24 tháng 9 2019

\(\left(x-2\right)\left(x-4\right)\left(x-6\right)\left(x-8\right)+16\)

\(=\left[\left(x-2\right)\left(x-8\right)\right]\left[\left(x-4\right)\left(x-6\right)\right]+16\)

\(=\left(x^2-10x+16\right)\left(x^2-10x+24\right)+16\)(1) 

Đặt \(x^2-10x+20=t\)thay vào (1) ta được : 

\(\left(t-4\right)\left(t+4\right)+16\)

\(=t^2-16+16\)

\(=t^2\)Thay \(t=x^2-10x+20\)ta được :

\(\left(x^2-10x+20\right)^2\)

\(=\left(x^2-2.5.x+25-25+20\right)^2\)

\(=\left[\left(x-5\right)^2-5\right]^2\)

\(=\left(x-5-\sqrt{5}\right)^2\left(x-5+\sqrt{5}\right)^2\)

26 tháng 7 2017

\(A=x\left(x+4\right)\left(x+6\right)\left(x+10\right)+128\)

\(=\left(x^2+10x\right)\left(x^2+10x+24\right)+128\)

Đặt \(x^2+10x=a\) nên : 

 \(A=a\left(a+24\right)+128=a^2+24a+144-16=\left(a+12\right)^2-4^2=\left(a+16\right)\left(a+8\right)\)

\(=\left(x^2+10x+8\right)\left(x^2+10x+16\right)=\left(x^2+10x+8\right)\left(x+2\right)\left(x+8\right)\)

2 tháng 8 2018

\(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)

\(=\left(x+4\right)^2\left(x^2-1\right)-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)

\(=\left(x-1\right)\left(x+1\right)\left(x+4+1\right)\left(x+4-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+5\right)\left(x-3\right)\)

=.= hok tốt!!

27 tháng 10 2018

c) Đặt \(A=\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)

Đặt \(x^2+3x+1,5=a\)

\(\Rightarrow A=\left(a-0,5\right)\left(a+0,5\right)-6\)

\(\Rightarrow A=a^2-0,25-6\)

\(\Rightarrow A=a^2-\frac{25}{4}\)

\(\Rightarrow A=\left(a-\frac{5}{2}\right)\left(a+\frac{5}{2}\right)\)

Thay \(a=x^2+3x+0,5\)vào A ta có :

\(A=\left(x^2+3x+0,5-\frac{5}{2}\right)\left(x^2+3x+0,5+\frac{5}{2}\right)\)

\(A=\left(x^2+3x-2\right)\left(x^2+3x+3\right)\)

27 tháng 10 2018

c, Đặt \(x^2+3x+2=a\)

Ta có : \(\left(a-1\right)a-6=a^2-a-6=\left(a^2-3a\right)+\left(2a-6\right)\)

                                                                       \(=a\left(a-3\right)+2\left(a-3\right)\)

                                                                       \(=\left(a+2\right)\left(a-3\right)\)

                                                                        \(=\left(x^2+3x+4\right)\left(x^2+3x-1\right)\)

Câu d làm tương tự .

Gợi ý : (x+3)(x+5) = x2 + 8x + 15 

đặt bằng a rồi giải tiếp

27 tháng 10 2018

Đặt \(A=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(A=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt \(x^2+7x+10=y\)

\(\Rightarrow\)\(A=y.\left(y+2\right)-24\)

\(A=y^2+2y+1-25\)

\(A=\left(y+1\right)^2-5^2\)

\(A=\left(y+1-5\right)\left(y+1+5\right)\)

\(A=\left(y-4\right)\left(y+6\right)\)

\(\Rightarrow A=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(A=\left[\left(x^2+x\right)+\left(6x+6\right)\right].\left(x^2+7x+16\right)\)

\(A=\left[x.\left(x+1\right)+6.\left(x+1\right)\right].\left(x^2+7x+16\right)\)

\(A=\left(x+1\right).\left(x+6\right).\left(x^2+7x+16\right)\)

27 tháng 10 2018

Đặt \(B=\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)

\(B=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)

Đặt \(12x^2+11x-1=a\)

\(\Rightarrow B=a.\left(a+3\right)-4\)

\(B=a^2+3a-4\)

\(B=\left(a^2-a\right)+\left(4a-4\right)\)

\(B=a.\left(a-1\right)+4.\left(a-1\right)\)

\(B=\left(a-1\right)\left(a+4\right)\)

\(\Rightarrow B=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)