Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
P(x) = (x^2-1)+(x+1).(x-1)
= [(x^2-x)+(x-1)]+(x+1).(x-1)
= (x-1).(x+1)+(x+1).(x-1)
= 2.(x-1).(x+1)
Tk mk nha
\(8xy^3+x\left(x-y\right)^3\)
\(=x\left[8y^3+\left(x-y\right)^3\right]\)
\(=x\left[\left(2y\right)^3+\left(x-y\right)^3\right]\)
\(=x\left(2y+x-y\right)\left[\left(2y\right)^2-2y\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=x\left(x+y\right)\left(4y^2-2xy+2y^2+x^2-2xy+y^2\right)\)
\(=x\left(x+y\right)\left(7y^2+x^2-4xy\right)\)
1. Ta có: \(3xy\left(a^2+b^2\right)+ab\left(x^2-9y^2\right)\)
\(=3xya^2+3xyb^2+abx^2+ab9y^2\)
\(=\left(3xya^2+abx^2\right)+\left(3xyb^2+ab9y^2\right)\)
\(=ax\left(3ya+bx\right)+3by\left(xb+3ya\right)\)
\(=\left(3ya+xb\right)\left(3yb+ax\right)\)
2.Check lại đề hộ mình nha:((
Câu 2 nên sủa lại đề nha
2. xy(a2+2b2)+ab(2x2+y2)
=xya2+xy2b2+ab2x2+aby2
=(xya2+aby2)+(xy2b2+ab2x2)
=ay(ax+by)+2bx(by+ax)
=(ax+by(ay+2bx)
A/ \(2x^2+7x+5=2\left(x^2+2x+1\right)+3x+3=2\left(x+1\right)^2+3\left(x+1\right)\)
\(=\left(x+1\right)\left(2x+5\right)\)
B/ \(x^2-4x-5=\left(x^2-4x+4\right)-9=\left(x-2\right)^2-3^2=\left(x-5\right)\left(x+1\right)\)
C/ \(x^4+x^3+x+1=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)=\left(x+1\right)^2\left(x^2-x+1\right)\)
D/\(x^4+4x^2-5=\left(x^4+4x^2+4\right)-9=\left(x^2+2\right)^2-3^2=\left(x^2-1\right)\left(x^2+5\right)=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
a) = 2x^2 + 2x +5x + 5 = 2x(x+1) + 5(x+1) = (2x+5)(x+1)
b) = x^2 + x - 5x - 5 = x(x-1) - 5(x-1) = (x-5)(x-1)
c) = x^3 ( x+1) + x+1 = (x^3+1) (x+1) = (x+1)^2 * (x^2 - x +1)
d) = x^4 - x^2 + 5x^2 -5 = x^2 (x^2-1) + 5(x^2-1) = (x^2+5)(x-1)(x+1)
\(x^3-x^2-4\)
\(=x^3-2x^2+x^2-4\)
\(=\left(x^3-2x^2\right)+\left(x^2-4\right)\)
\(=x^2\left(x-2\right)+\left(x-2\right)\left(x+2\right)\)
\(=\left(x^2+x+2\right)\left(x-2\right)\)
Đề đúng :
\(x^3-5x^2+8x-4\)
\(=x^3-x^2-4x^2+4x+4x-4\)
\(=\left(x^3-x^2\right)-\left(4x^2-4x\right)+\left(4x-4\right)\)
\(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x^2-4x+4\right)\left(x-1\right)\)
\(=\left(x^2-2.2.x+2^2\right)\left(x-1\right)\)
\(=\left(x-2\right)^2\left(x-1\right)\)
25n(n-1)-50(n-1) luôn chia hết cho 150 với mọi n là số nguyên
giúp mình chứng minh nha . Cám ơn mấy bạn
= \(2\left(x^2+2x+1-y^2\right)=2\left[\left(x+1\right)^2-y^2\right]=2\left(x-y+1\right)\left(x+y+1\right)\)