Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=( a +1)(a+3)(a+5)(a+7)+15
=(a+1)(a+7)(a+3)(a+5)+15
=(a2+8a+7)(a2+8a+15)+15
Đặt y=a2+8a+7 ta được :
y(y+8)+15=y2 + 8y +15
=y2 +3y+5y+15
=y(y+3) +5(y+3)
=(y+3)(y+5)
thay y=a2+8a+7 ta được
(a2+8a+7+3)(a2+8a+7+5)
=(a2+8a+10)(a2-2a-6a+12)
=(a2+8a+10)[a(a-2)-6(a-2)]
=(a2+8a+10)(a-2)(a-6)
A=(a+1)(a+3)(a+5)(a+7)+15
A=[(a+1)(a+7)][(a+5)(a+3)]+15
A=(a2+8a+7)(a2+8a+15)+15
Đặt a2+8a = v
Ta có :
A=(v+7)(v+15)+15
A= v2+22v+105+15
A= v2+22v+ 120
A= v2+10v+12v+120
A=( v2+10v)+(12v+120)
A=[v(v+10)]+[12(v+10)]
A=(v+10)(v+12) (1)
Thay a2+8a = v vào (1)
A=(a2+8a+10)(a2+8a+12)
\(A=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(=\left[\left(a+1\right)\left(a+7\right)\right]\left[\left(a+3\right)\left(a+5\right)\right]+15\)
\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
Đặt: \(a^2+8a+11=t\), khi đó pt trở thành:
\(\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1=\left(t-1\right)\left(t+1\right)\)
\(=\left(a^2+8a+11-1\right)\left(a^2+8a+11+1\right)=\left(a^2+8a+10\right)\left(a^2+8a+12\right)\\ =\left(a+2\right)\left(a+6\right)\left(a^2+8a+10\right)\)
\(A=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
Đặt \(t=a^2+8a+7\) khi đó A thành:
\(t\left(t+8\right)+15=t^2+8t+15\)
\(=\left(t+3\right)\left(t+5\right)=\left(a^2+8a+7+3\right)\left(a^2+8a+7+5\right)\)
\(=\left(a^2+8a+10\right)\left(a^2+8a+12\right)\)
\(=\left(a^2+8a+10\right)\left(a+2\right)\left(a+6\right)\)
\(A=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(=\left[\left(a+1\right)\left(a+7\right)\right]\left[\left(a+3\right)\left(a+5\right)\right]+15\)
\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
Đặt : \(a^2+8+11=t\) khi đó pt trở thành :
\(\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1=\left(t-1\right)\left(t+1\right)\)
\(=\left(a^2+8a+11-1\right)\left(a^2+8a+11+1\right)\)
\(=\left(a^2+8a+10\right)\left(a^2+8a+12\right)\)
\(=\left(a+2\right)\left(a+6\right)\left(a^2+8a+10\right)\)
Chúc bạn học tốt !!!
A = (a+1)(a+3)(a+5)(a+7) + 15
A = [ (a+1) (a+7)] [(a+3) (a+5)] + 15
A= ( a2 + 8a + 7)( a2 + 8a + 15 ) + 15 (*)
Đặt a2 + 8a + 7 = t
=> A = t.(t+8) + 15
A = t2 + 8t + 15
A = t2 + 3t + 5t + 15
A = ( t +3).(t+5)
Thay A = ( t +3).(t+5) vào (*)
=> A = ( a2 + 8a + 7 + 3).( a2 + 8a + 7 + 5)
A = ( a2 + 8a + 10).( a2 + 8a + 12 )
A = ( a2 + 8a + 10).( a2 + 6a + 2a + 12 )
A = ( a2 + 8a + 10) ( a+6)(a+2)
(a+1)(a+7)(a+3)(a+5)+15
=(a2+8a+7)(a2+8a+15)+15
=(a2+8a+11-4)(a2+8a+11+4)+15
=(a2+8a+11)2-42+15
=(a2+8a+11)2-1
=(a2+8a+11-1)(a2+8a+11+1)
=(a2+8a+10)(a2+8a+12)
=(a^2+8a+7)*(a^2+8a+15)+15
Đặt (a^2+8a+7)=t ta có
t*(t+8)+15=t^2+8t+15=t^2+3t+5t+15=(t+3)*(t+5)(*)
Thay t=a^2+8a+7 vào (*) là được
\(A=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(=\left(a+2\right)\left(a+6\right)\left(a^2+8a+10\right)\)
\(A=\left(a+1\right).\left(a+3\right).\left(a+17\right)+15\)
\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
\(=\left(a^2+8a+11-4\right)\left(a^2+8a+11+4\right)+15\)
\(=\left(a^2+8a+11\right)^2-4^2+15\)
\(=\left(a^2+8a+11\right)^2-1\)
\(=\left(a^2+8a+11-1\right)\left(a^2+8a+11+1\right)\)
\(=\left(a^2+8a+10\right)\left(a^2+8a+12\right)\)
\(a^5+a^3-a^2-1=a^3\left(a^2+1\right)-\left(a^2+1\right)=\left(a^3-1\right)\left(a^2+1\right)\)
\(a^5+a^3-a^2-1=a^3\left(a^2+1\right)-\left(a^2+1\right)=\left(a^3-1\right)\left(a^2+1\right)=\left(a-1\right)\left(a^2+a+1\right)\left(a^2+1\right)\)
Đặt \(M=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(M=\left[\left(a+1\right)\left(a+7\right)\right]\left[\left(a+3\right)\left(a+5\right)\right]+15\)
\(M=\left(a^2+7a+a+7\right)\left(a^2+5a+3a+15\right)+15\)
\(M=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
Đặt \(p=a^2+8a+11\)
\(\Rightarrow M=\left(p-4\right)\left(p+4\right)+15\)
\(\Rightarrow M=p^2-16+15\)
\(\Rightarrow M=p^2-1\)
\(\Rightarrow M=\left(p-1\right)\left(p+1\right)\)
Thay \(p=a^2+8a+11\)vào M, ta có :
\(M=\left(a^2+8a+11-1\right)\left(a^2+8a+11+1\right)\)
\(M=\left(a^2+8a+10\right)\left(a^2+8a+12\right)\)