Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3\left(x^2-7\right)^2-36x\)
\(=x.\left[x^2.\left(x^2-7\right)^2-36\right]\)
\(=x.\left[\left(x^3-7x\right)^2-6^2\right]\)
\(=x.\left(x^3-7x-6\right).\left(x^3-7x+6\right)\)
\(=x.\left(x+1\right)\left(x^2-x-6\right).\left(x-1\right).\left(x^2+x-6\right)\)
\(=x.\left(x+1\right).\left(x+2\right).\left(x+3\right).\left(x-1\right).\left(x-2\right).\left(x-3\right)\)
Ta có : \(x^3\left(x^2-7\right)^2-36x\)
= \(x^3\left(x^4-14x^2+49\right)-36x\)
= \(x\left(x^6-14x^4+49x^2-36\right)\)
= \(x\left(x^2-1\right)\left(x^2-4\right)\left(x^2-9\right)\)---- chỗ này tắt
= (x-3)(x-2)(x-1)x(x+1)(x+2)(x+3)
a, = [(x-2).(x+1)]^2+(x-2)^2
= (x-2)^2.(x+1)^2+(x-2)^2
= (x-2)^2.[(x+1)^2+1]
= (x-2)^2.(x^2+2x+2)
Tk mk nha
b) \(6x^5+15x^4+20x^3+15x^2+6x+1\)
\(=6x^5+3x^4+12x^4+6x^3+14x^3+7x^2+8x^2+4x+2x+1\)
\(=\left(2x+1\right)\left(3x^4+6x^3+7x^2+4x+1\right)\)
\(=\left(2x+1\right)\left(3x^4+3x^3+3x^2+3x^3+3x^2+3x+x^2+x+1\right)\)
\(=\left(2x+1\right)\left(x^2+x+1\right)\left(3x^2+3x+1\right)\)
\(x^5+y^5-\left(x+y\right)^5\)
\(=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+8xy^4+y^5\right)\)
\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)
\(=-5xy\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]\)
\(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)
/ (4x−2)(10x+4)(5x+7)(2x+1)+17=0(4x−2)(10x+4)(5x+7)(2x+1)+17=0
⇔(4x−2)(5x+7)(10x+4)(2x+1)+17=0⇔(4x−2)(5x+7)(10x+4)(2x+1)+17=0
⇔(20x2+18x−14)(20x2+18x+4)+17=0⇔(20x2+18x−14)(20x2+18x+4)+17=0
Đặt t= 20x2+18x+4(t≥0)20x2+18x+4(t≥0) ta có:
(t-18).t +17=0
⇔t2−18t+17=0⇔t2−18t+17=0
⇔(t−17)(t−1)=0⇔(t−17)(t−1)=0
⇔[t=17(tm)t=1(tm)⇔[t=17(tm)t=1(tm) ⇔[20x2+18x+4=1720x2+18x+4=1⇔[20x2+18x−13=020x2+18+3=0⇔[20x2+18x+4=1720x2+18x+4=1⇔[20x2+18x−13=020x2+18+3=0
⇔[(20x+9−341−−−√)(20x+9+341−−−√)=0(20x+9−21−−√)(20x+9+21−−√)=0⇔[(20x+9−341)(20x+9+341)=0(20x+9−21)(20x+9+21)=0
⇔⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢x=−9+341−−−√20x=−9−341−−−√20x=−9+21−−√20x=−9−21−−√20
\(a,\)\(\left(4x-2\right)\left(10x+4\right)\left(5x+7\right)\left(2x+1\right)+17\)
\(=\left(4x-2\right)\left(5x+7\right)\left(10x+4\right)\left(2x+1\right)+17\)
\(=\left(20x^2+18x-5\right)\left(20x^2+18x+4\right)+17\)
Đặt ....