Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(=\dfrac{12\left(y-z\right)^4+3\left(y-z\right)^5}{6\left(y-z\right)^2}=2\left(y-z\right)^2+\dfrac{1}{2}\left(y-z\right)^3\)
\(a,=6x\left(x-2\right)-7\left(x-2\right)=\left(6x-7\right)\left(x-2\right)\)
-[ ((x2)2+(y2)2+(z2)2-2x2y2-2x2z2+2y2z2)-4y2z2]
- ( (x2-y2-z2)2-(2yz)2)
-( x2-y2-z2-2yz )(x2-y2-z2+2yz)
Sai thì bảo mình đừng k sai a -)
\(=\dfrac{2\left(x-2y+z\right)^3+4\left(x-2y+z\right)^2}{2\left(x-2y+z\right)}=\left(x-2y+z\right)^2+2\left(x-2y+z\right)\)
Anh chỉ em pp học Toán giỏi như anh được ko ạ rất thích môn Toán nên cũng rất hâm mộ anh
Mình nghĩ bạn ghi đề sai, đề đúng theo mình là:
\(x^2y^2\left(x-y\right)+y^2z^2\left(y-z\right)+z^2x^2\left(z-x\right)\)
\(=x^2y^2\left(x-y\right)-y^2z^2\text{[}\left(x-y\right)+\left(z-x\right)\text{]}+z^2x^2\left(z-x\right)\)
\(=x^2y^2\left(x-y\right)-y^2z^2\left(x-y\right)-y^2z^2\left(z-x\right)+z^2x^2\left(z-x\right)\)
\(=\left(x-y\right)\left(x^2y^2-y^2z^2\right)+\left(z-x\right)\left(z^2x^2-y^2z^2\right)\)
\(=\left(x-y\right).y^2\left(x+z\right)\left(x-z\right)+\left(z-x\right).z^2\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(x-z\text{ }\right)\text{[}y^2.\left(x+z\right)-z^2\left(x+y\right)\text{]}\)
\(=\left(x-y\right)\left(z-x\right)\left(y^2x+y^2z-z^2x-z^2y\right)\)
\(=\left(x-y\right)\left(z-x\right)\text{[}\left(y^2x-z^2x\right)+\left(y^2z-z^2y\right)\text{]}\)
\(=\left(x-y\right)\left(z-x\right)\text{[}x.\left(y-z\right)\left(y+z\right)+yz\left(y-z\right)\text{]}\)
\(=\left(x-y\right)\left(x-z\right)\left(y-z\right)\left(xy+x\text{z}+yz\right)\)
\(2x^2+2y^2-x^2z+z-y^2z-2\)
\(=\left(2x^2-x^2z\right)+\left(2y^2-y^2z\right)-\left(2-z\right)\)
\(=x^2\left(2-z\right)+y^2\left(2-z\right)-\left(2-z\right)\)
\(=\left(2-z\right)\left(x^2+y^2-1\right)\)
\(2x^2+2y^2-x^2z-y^2z-2=x^2\left(2-z\right)+y^2\left(2-z\right)-\left(2-z\right)=\left(2-z\right)\left(x^2+y^2-1\right)\)