\(\left(x^2+x+1\right)\left(x^2+x+1\right)-12\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

trong sách 

nâng cao và 

phát triển toán 8

kìa

26 tháng 7 2018

Thì tui mới phải xin cách làm 

25 tháng 2 2020

Ta có :
\(x^2\left(x^4-1\right)\left(x^2+1\right)+1=x^2\left(x^2-1\right)\left(x^2+1\right)\left(x^2+2\right)+1\) 
\(\Leftrightarrow x^2\left(x^2+1\right)\left(x^2-1\right)\left(x^2+2\right)+1=\left(x^4-x^2\right)\left(x^4+x^2-2\right)+1\)
Gọi \(x^4-x^2\) là t, ta có:
t(t-2)+1=\(t^2-2t+1=\left(t-1\right)^2=\left(x^4+x^2-1\right)^2\)

2 tháng 8 2018

\(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)

\(=\left(x+4\right)^2\left(x^2-1\right)-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)

\(=\left(x-1\right)\left(x+1\right)\left(x+4+1\right)\left(x+4-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+5\right)\left(x-3\right)\)

=.= hok tốt!!

22 tháng 12 2016

a)

\(x^2-x-12\)

\(=x^2-4x+3x-12\)

\(=x\left(x-4\right)+3\left(x-4\right)\)

\(=\left(x-4\right)\left(x+3\right)\)

b)

Đặt \(x^2+3x+1=t\), ta có:

\(t\left(t+1\right)-6\)

\(=t^2+t-6\)

\(=t^2+3x-2x-6\)

\(=t\left(t+3\right)-2\left(t+3\right)\)

\(=\left(t+3\right)\left(t-2\right)\)

22 tháng 12 2016

a, \(x^2-x-12\)

\(=x^2-4x+3x-12\)

\(=x\left(x-4\right)+3\left(x-4\right)\)

\(=\left(x-4\right)\left(x+3\right)\)

b, \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)

\(=\left(x^2+3x+1,5\right)^2-0,5^2-6\)

\(=\left(x^2+3x+1,5\right)^2-2,5^2\)

\(=\left(x^2+3x+1,5-2,5\right)\left(x^2+3x+1,5+2,5\right)\)

\(=\left(x^2+3x-1\right)\left(x^1+3x+1\right)\)

18 tháng 10 2020

1. \(B=\left(x-2\right)\left(x+2\right)\left(x+3\right)-\left(x+1\right)^3\)

\(=\left(x^2-4\right)\left(x+3\right)-\left(x^3+3x^2+3x+1\right)\)

\(=x^3+3x^2-4x-12-x^3-3x^2-3x-1\)

\(=-7x-13\)

2. \(64-x^2-y^2+2xy=64-\left(x^2+y^2-2xy\right)\)

\(=64-\left(x-y\right)^2=\left(8+x-y\right)\left(8-x+y\right)\)

3. \(2x^3-x^2+2x-1=0\)

\(\Leftrightarrow x^2.\left(2x-1\right)+\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2+1\right)=0\)

Vì \(x^2\ge0\)\(\Rightarrow x^2+1>0\)

\(\Rightarrow2x-1=0\)\(\Rightarrow2x=1\)\(\Rightarrow x=\frac{1}{2}\)

Vậy \(x=\frac{1}{2}\)

18 tháng 10 2020

Bài 1.

B = ( x - 2 )( x + 2 )( x + 3 ) - ( x + 1 )3

= ( x2 - 4 )( x + 3 ) - ( x3 + 3x2 + 3x + 1 )

= x3 + 3x2 - 4x - 12 - x3 - 3x2 - 3x - 1

= -7x - 13

Bài 2.

64 - x2 - y2 + 2xy

= 64 - ( x2 - 2xy + y2 )

= 82 - ( x - y )2

= ( 8 -  x + y )( 8 + x - y )

Bài 3.

2x3 - x2 + 2x - 1 = 0

<=> ( 2x3 - x2 ) + ( 2x - 1 ) = 0

<=> x2( 2x - 1 ) + 1( 2x - 1 ) = 0

<=> ( 2x - 1 )( x2 + 1 ) = 0

<=> \(\orbr{\begin{cases}2x-1=0\\x^2+1=0\end{cases}}\Leftrightarrow x=\frac{1}{2}\)( vì x2 + 1 ≥ 1 > 0  ∀ x )

10 tháng 10 2018

a, 4y(x-1)-(1-x)

=(x-1)(4y+1)

b,3x(z+2)+5(-x-2)

=3x(z+2)-5(x+2)

=(z+2)(3x-5)

6 tháng 10 2016

sai đề

 

6 tháng 10 2016

Sai đề nhé bạn

\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

Đặt \(x^2+x+1=t\)

Đa thức trở thành \(t\left(t+1\right)-12\)

\(=t^2+t-12\)

\(=t^2+3t-4t-12\)

\(=t\left(t+3\right)-4\left(t+3\right)\)

\(=\left(t+3\right)\left(t-4\right)\)

Thay vào ta được 

\(\left(x^2+x+4\right)\left(x^2+x-3\right)\)

31 tháng 10 2016

đề sai rồi bạn ơi

31 tháng 10 2016

Sai đề rồi đa thức này không có nghiêm làm sao phân tích được