K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

áp dụng a+b+c =0 => a3 +b3+c3=3abc

b: \(=\left(b-c+c-a\right)^3-3\left(b-c\right)\left(c-a\right)\left(b-c+c-a\right)-\left(b-a\right)^3\)

\(=-3\left(b-c\right)\left(c-a\right)\left(b-a\right)\)

c: \(=\left(x^2+y^2+z^2-x^2\right)^3-3\left(x^2+y^2\right)\left(z^2-x^2\right)\left(x^2+y^2+z^2-x^2\right)-\left(y^2+z^2\right)^3\)

\(=-3\left(x^2+y^2\right)\left(z^2-x^2\right)\left(y^2+z^2\right)\)

28 tháng 8 2018

a) \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)

\(=\left[\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3\right]-\left(y^2+z^2\right)^3\)

\(=\left(x^2+y^2+z^2-x^2\right)\left[\left(x^2+y^2\right)^2-\left(x^2+y^2\right)\left(z^2-x^2\right)+\left(z^2-x^2\right)^2\right]-\left(y^2+z^2\right)^3\)

\(=\left(y^2+z^2\right)\left(x^4+2x^2y^2+y^4-x^2z^2+x^4-y^2z^2+x^2y^2+z^4-2z^2x^2+x^4\right)-\left(y^2+z^2\right)^3\)

\(=\left(y^2+z^2\right)\left[x^4+2x^2y^2+y^4-x^2z^2+x^4-y^2z^2+x^2y^2+z^4-2z^2x^2+x^4-\left(y^2+z^2\right)^2\right]\)

\(=\left(y^2+z^2\right)\left(x^4+2x^2y^2+y^4-x^2z^2+x^4-y^2z^2+x^2y^2+z^4-2z^2x^2+x^4-y^4-2y^2z^2-z^4\right)\)

\(=\left(y^2+z^2\right)\left(3x^4+3x^2y^2-3x^2z^2-3y^2z^2\right)\)

   = 3(y2+z2)(x4+x2y2-x2z2-y2z2)

   = 3(y2+z2)[x2(x2+y2)-z2(x2+y2)]

   = 3(y2+z2)(x2-z2)(x2+y2)

   = 3(y2+z2)(x-z)(x+z)(x2+y2)

b) \(\left(x+y\right)^3-x^3-y^3\)

\(=x^3+3x^2y+3xy^2+y^3-x^3-y^3\)

\(=3x^2y+3xy^2=3xy\left(x+y\right)\)

c) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+3\left(x+y\right)^2.z+3\left(x+y\right).z^2+z^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+3\left(x+y\right)^2.z+3\left(x+y\right).z^2-\left(x^3+y^3\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2+3\left(x+y\right).z+3z^2\right]-\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2+3xz+3yz+3z^2-x^2+xy-y^2\right)\)

  = (x+y)[3xy+3xz+3yz+3z

  = 3(x+y)(xy+xz+yz+z2)

  = 3(x+y)[x(y+z)+z(y+z)]

  = 3(x+y)(x+z)(y+z)

28 tháng 8 2018

a) \(\left(x^2+y^2\right)^3+\left(z^2-x^3\right)-\left(y^2+z^2\right)^3\)

\(=x^6+3x^4y^2+3x^4y^2+y^6+z^2+-x^2+-y^6+-3y^4z+-3y^2z^4+-z^6\)

\(=x^6+3x^4y^2+3x^2y^4+-3y^4z^4+-z^6+-x^2+z^2\)

b) \(\left(x+y\right)^3-x^3-y^3\)

\(=x^3+3x^2y+3xy^2+y^3+-x^3+-y^3\)

\(=\left(x^3+-x^3\right)+\left(3x^2y\right)+\left(3xy^2\right)+\left(y^3+-y^3\right)\)

\(=3x^2y+3xy^2\)

c) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=x^3+3x^2y+3x^2z+3xy^2+6xyz+3xz^2+y^3+3y^2z+3yz^2+z^2-x^3-y^3-z^3\)

\(=3x^2y+3x^2z+3xy^2+3xy^2+6xyz+3xz^2+3y^2z+3yz^2\)

P/s: Ko chắc

1 tháng 11 2016

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

27 tháng 9 2016

mk học lớp 7 thui

23 tháng 9 2016

a) x3 + (a+b+c)x2+ (ab+ac+bc)x +abc

= x3 +ax2+bx2+cx2+abx+acx+bcx+abc

=x3+cx2+abx+abc+ax2+acx+bx2+bcx

=x2 (x+c) + ab (x+c) +ax (x+c) +bx (x+c)

= (x+c) (x2+ab+ax+bx)

= (x+c) { x(x+b)+a(x+b)}

=(x+c) (x+b) (x+a)

i: \(=\left(b-c+c-a\right)\left[\left(b-c\right)^2-\left(b-c\right)\left(c-a\right)+\left(c-a\right)^2\right]+\left(a-b\right)^3\)

\(=\left(b-a\right)\left(b^2-2bc+c^2-bc+ab+c^2-ac+c^2-2ac+a^2\right)+\left(a-b\right)\)

\(=\left(b-a\right)\left(b^2+3c^2+a^2-3bc+ab-3ac\right)+\left(a-b\right)\)

\(=\left(b-a\right)\left(b^2+3c^2+a^2-3bc+ab-3ac-1\right)\)

k: \(=\left(x^2+y^2+z^2-x^2\right)^3-3\left(x^2+y^2\right)\left(z^2-x^2\right)\left(y^2+z^2\right)-\left(y^2+z^2\right)^3\)

\(=-3\left(x^2+y^2\right)\left(z-x\right)\left(z-x\right)\left(y^2+z^2\right)\)