Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) \(x^4-5x^2+4\)
Đặt \(x^2=t\).Ta có:
\(x^4-5x^2+4=t^2-5t+4\)
\(t^2-t-4t+4=\left(t^2-t\right)-\left(4t-4\right)\)
\(=t\left(t-1\right)-4\left(t-1\right)=\left(t-1\right)\left(t-4\right)\)
\(=\left(x^2-1\right)\left(x^2-4\right)\)\(=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\)
a) \(x^3-3x^2-4x+12\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x^2-4\right)\left(x-3\right)\)
\(=\left(x+2\right)\left(x-2\right)\left(x-3\right)\)
b) \(2x^2-2y^2-6x-6y\)
\(=2\left(x^2-y^2\right)-6\left(x+y\right)\)
\(=2\left(x+y\right)\left(x-y\right)-6\left(x+y\right)\)
\(=\left(x+y\right)\left[2\left(x-y\right)-6\right]\)
\(=\left(x+y\right)\left(2x-2y-6\right)\)
\(=2\left(x+y\right)\left(x-y-3\right)\)
c) \(x^3+3x^2-3x-1\)
\(=\left(x^3-1\right)+\left(3x^2-3x\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+3x+1\right)\)
\(=\left(x-1\right)\left(x^2+4x+1\right)\)
d) \(x^4-5x^2+4\)
\(=x^4-4x^2-x^2+4\)
\(=x^2\left(x^2-4\right)-\left(x^2-4\right)\)
\(=\left(x^2-4\right)\left(x^2-1\right)\)
\(\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)
a) y2 + 2y = y(y + 2)
b) y3 - 2y2 + y = y(y2 - 2y + 1) = y(y - 1)2
c) y2 - x2 - 6y - 6x
= (y + x)(y - x) - 6(y + x)
<=> (x + y)( y - x - 6)
d) x3 - 3x = x(x2 - 3)
e) 2x - xy + 2z - yz
= x(2 - y) + z(2 - y)
= (2 - y)(x + z)
Làm tính nhân
(4x3+3xy2-2y3).(3x2-5xy-6y2)
=12x5+12y5-20x4y-36x2y3-8xy4
Phân tích đa thức thành nhân tử
10x3+5x2y-10x2y-10xy2+5y3
=10x3-5x2y-10xy2+5y3
=5(2x3-x2y-2xy2+y3-)
\(a.=x^3+3x^2y+3x^2y+9xy^2+3xy^2+9y^3\)
\(=x^2\left(x+3y\right)+3xy\left(x+3y\right)+3y^2\left(x+3y\right)\)
\(=\left(x+3y\right)\left(x^2+3xy+3y^2\right).\)
\(b.=9x^3+3x^2y+9x^2y+3xy^2+3xy^2+y^3\)
\(=3x^2\left(3x+y\right)+3xy\left(3x+y\right)+y^2\left(3x+y\right)\)
\(=\left(3x^2+3xy+y^2\right)\left(3x+y\right)\).
c, \(2x^2+x-3=x\left(2x-3\right)\)
d, \(6x^2-x-15=x\left(6x-15\right)\)
TK MIK NHA
\(2x^2+x-3=2x^2-2x+3x-3=2x\left(x-1\right)+3\left(x-1\right)=\left(x-1\right)\left(2x+3\right) \)