Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x\(^2\)-(a+b)x+ab
= x\(^2\)-ax-bx+ab
= x(x-a) - b(x-a)
= ( x-a).( x-b)
ax-2x-a\(^2\)+2a
= x(a-2) - a(a-2)
= (a-2).( x-a)
Ta có
a, x2-x-y2-y
=x2-y2-(x+y)
=(x-y)(x+y) - (x+y)
=(x+y)(x-y-1)
b, x2-2xy+y2-z2
=(x-y)2-z2
=(x-y-z)(x-y+z)
#) TL :
x3 - 2x - 4
= x3 - 4x + 2x - 4
= x( x2 - 4 ) + 2( x - 2)
= x( x -2 )( x + 2) + 2(x-2)
= (x- 2)( x2 + 2x + 2 )
Chúc bn hok tốt ạ :3
Cách 1: Như bạn kia
Cách 2: Muốn thêm bớt thì thêm bớt:)
\(x^3-2x-4=x^3-2x^2+\left(2x^2-2x-4\right)\)
\(=x^2\left(x-2\right)+2\left(x-2\right)\left(x+1\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
Cách 3: Tách hạng tử:
\(x^3-2x-4=\left(x^3-8\right)-\left(2x-4\right)\)
\(=\left(x-2\right)\left(x^2+2x+4\right)-2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
Cách 4: Tách hạng tử:
\(x^3-2x-4=\frac{1}{2}x^3-2x+\frac{1}{2}x^3-4\)
\(=\frac{1}{2}x\left(x^2-4\right)+\frac{1}{2}\left(x^3-8\right)\)
Dùng hằng đẳng thức tiếp xem có ra không:D
\(x^3+x^2+4\)
\(=x^3-x^2+2x^2+2x-2x+4\)
\(=\left(x^3-x^2+2x\right)+\left(2x^2-2x+4\right)\)
\(=x\left(x^2-x+2\right)+2\left(x^2-x+2\right)\)
\(=\left(x^2-x+2\right)\left(x+2\right)\)
x2-2x-3 = x2-3x+x-3 = x(x-3) + (x-3) = (x+1)(x-3)
CHọn mình nha :)
\(x^2-2x-3\)
\(=x^2+x-3x-3\)
\(=x\left(x+1\right)-3\left(x+1\right)\)
\(=\left(x+1\right)\left(x-3\right)\)
hk tot
^^
=x^3-2x^2+2x-4-9
=(x-2)(x^2+2)-9
\(=\left(\sqrt{\left(x-2\right)\left(x^2+2\right)}-3\right)\left(\sqrt{\left(x-2\right)\left(x^2+2\right)}+3\right)\)