Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\left(b^2+c^2\right)+b\left(a^2+c^2\right)+c\left(a^2+b^2\right)-2abc-a^3-b^3-c^3\)
\(=c\left(a-b\right)^2+\left[ab^2+ac^2+a^2b+bc^2-a^3-b^3-c^3\right]\)
\(=c\left(a-b\right)^2+c^2\left(a+b-c\right)+ab^2+a^2b-a^3-b^3\)
\(=c\left(a-b\right)^2+c^2\left(a+b-c\right)-\left(a^3-a^2b\right)+\left(ab^2-b^3\right)\)
\(=c\left(a-b\right)^2+c^2\left(a+b-c\right)-a^2\left(a-b\right)+b^2\left(a-b\right)\)
\(=c\left(a-b\right)^2+c^2\left(a+b-c\right)-\left(a+b\right)\left(a-b\right)^2\)
\(=-\left(a-b\right)^2\left(a+b-c\right)+c^2\left(a+b-c\right)\)
\(=\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\)
.\(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)-2abc-a^3-b^3-c^3\)
=\(a\left(b^2-2bc+c^2-a^2\right)+b\left(a^2+2ac+c^2-b^2\right)+c\left(a^2-2ab+b^2-c^2\right)\)
=\(a\left[\left(b-c\right)^2-a^2\right]+b\left[\left(a+c\right)^2-b^2\right]+=c\left[\left(a-b^2\right)-c^2\right]\)
=\(a\left(c-b+a\right)\left(a+b-c\right)+b\left(a+c-b\right)\left(a+b+c\right)+c\left(a-b+c\right)\left(a-b-c\right)\)
=\(\left(a+c-b\right)\left[a\left(c-b+a\right)+b\left(a+b+c\right)+c\left(a-b-c\right)\right]\)
=\(\left(a+c-b\right)\left(b+a-c\right)\left(c+b-a\right)\)
Ta có
D = a ( b 2 + c 2 ) – b ( c 2 + a 2 ) + c ( a 2 + b 2 ) – 2 a b c = a b 2 + a c 2 – b c 2 – b a 2 + c a 2 + c b 2 – 2 a b c = ( a b 2 – a 2 b ) + ( a c 2 – b c 2 ) + ( a 2 c – 2 a b c + b 2 c ) = a b ( b – a ) + c 2 ( a – b ) + c ( a 2 – 2 a b + b 2 ) = - a b ( a – b ) + c 2 ( a – b ) + c ( a – b ) 2 = ( a – b ) ( - a b + c 2 + c ( a – b ) ) = ( a – b ) ( - a b + c 2 + a c – b c ) = ( a – b ) [ ( - a b + a c ) + ( c 2 – b c ) ]
= (a – b)[a(c – b) + c(c – b)]
= (a – b)(a + c)(c – b)
Với a = 99; b = -9; c = 1, ta có
D = (99 - (-9))(99 + 1) (1 - (-9)) = 108.100.10 = 108000
Đáp án cần chọn là: B
mới ăn miếng cơm cà ngon nhức nách luôn ai thèm cơm cà không điểm danh nào
Biểu thức này không phân tích thành nhân tử được
Muốn phân tích được thành nhân tử thì cần có thêm số hạng \(c\left(a^2+b^2+ab\right)\)
c: Ta có: \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
\(=a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)
\(=a^4-2a^3b+2ab^3-b^4\)
\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)-2ab\left(a^2-b^2\right)\)
\(=\left(a-b\right)^3\cdot\left(a+b\right)\)
phân tích bằng đặt ẩn phụ=))
Ta có:\(\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2+\left(ab+bc+ca\right)^2\)
\(=\left(a^2+b^2+c^2\right)\left[\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)\right]+\left(ab+bc+ca\right)^2\)
Đặt:\(a^2+b^2+c^2=x;ab+bc+ca=y\),ta có:
\(x\left(x+2y\right)+y^2=x^2+2xy+y^2=\left(x+y\right)^2\)
Thay vào,ta được:\(\left(x+y\right)^2=\left(a^2+b^2+c^2+ab+bc+ca\right)^2\)