K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

<=> [(x + 2)(x + 5)][(x + 3)(x + 4) - 24 = (x2 + 7x + 10) (x2 + 7x + 12) - 24 (1)

đặt x2 + 7x + 11 = t

=> ( 1 ) <=> (t - 1)(t + 1) - 24 = t2 - 1 - 24 = t2 - 25 = (t - 5)(t + 5)

=> (x2 + 7x + 11 - 5) (x2 + 7x + 11 + 5) = (x2 + 7x + 6) (x2 + 7x + 16) (x + 1) (x + 6) (x2 + 7x + 16)

chúc you học tốt!! ^^

ok mk nhé!! 4545454353434636565454676345345346654767567567587676345346334534534565646756

6 tháng 2 2016

mik chỉ biết (x+2)(x+3)(x+4)(x+5)-24=(x+6)(x+1)(x2+7x+16 bằng cách đặt ẩn phụ thui còn lại ko biết sorry nha

 

9 tháng 12 2019

Đặt \(A=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(\Rightarrow A=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)

         \(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt \(x^2+7x+11=t\)

\(\Rightarrow A=\left(t-1\right)\left(t+1\right)-24=t^2-1-24=t^2-25=\left(t-5\right)\left(t+5\right)\)

        \(=\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

        \(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

9 tháng 10 2021

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\\ =\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\\ =\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt \(x^2+7x+11=y\)

\(\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\\ =\left(y+1\right)\left(y-1\right)-24\\ =y^2-1-24\\ =y^2-25\\ =\left(y-5\right)\left(y+5\right)\\ =\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\\ =\left(x^2+7x+6\right)\left(x^2+7x+16\right)\\ =\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

4 tháng 7 2019

Ta có:

P= (x+1)(x+3)(x+5)(x+7)+15

=((x+1)(x+7))((x+3)(x+5))+15

=(x^2+8x+7)(x^2+8x+15)+15

Đặt t=x^2+8x+11, ta có:

P=(t-4)(t+4)+15

P=t^2-16+15

P=t^2-1=(t-1)(t+1)

Vậy: P=(x^2+8x+10)(x^2+8x+12)

          =(x^2+8x+10)(x+6)(x+2)

4 tháng 9 2016

x+ 4 = ( x+ 2 )( x2 - 2 )

23 tháng 3 2020

a) x4 + 4 = (x4 + 4x2 + 4) - 4x2 = (x2 + 2)2 - 4x2 = (x2 + 2x  + 2)(x2 - 2x + 2)

b) (x + 2)(x + 3)(x + 4)(x + 5) - 24 = (x + 2)(x + 5)(x + 3)(x + 4) - 24

= (x2 + 7x + 10)(x2 + 7x + 12) - 24

Đặt x2 + 7x + 10 = y => y(y + 2) - 24 = y2 + 2y - 24

= y2 + 6y - 4y - 24 = (y - 4)(y + 6) = (x2 + 7x + 10 - 4)(x2 + 7x + 10 + 6)

= (x2 + 7x + 6)(x2 + 7x + 16) = (x2 + x + 6x + 6)(x2 + 7x + 16) = (x + 1)(x + 6)(x2 + 7x + 16)

23 tháng 3 2020

ko làm mà đòi có ăn :)

14 tháng 12 2016

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt \(t=x^2+7x+10\) ta có:

\(=t\left(t+2\right)-24=t^2+2t-24\)

\(=t^2-4t+6t-24\)\(=t\left(t-4\right)+6\left(t-4\right)\)

\(=\left(t-4\right)\left(t+6\right)=\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

 

27 tháng 3 2017

(x+2)(x+3)(x+4)(x+5)-24

=(x^2+7x+10)(x^2+7x+12)-24

Đặt x^2+7x+10=a

a(a+2)-24

=a^2+2a-24

=(a-4)(a+6)

=(x^2+7x+6)(x^2+7x+16)

=(x+1)(x+6)(x^2+7x+16)

NV
3 tháng 1

a.

\(x^4+4=x^4+4x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

b.

\(x^3-9x^2+6x+16=\left(x^3-7x^2-8x\right)-\left(2x^2-14x-16\right)\)

\(=x\left(x^2-7x-8\right)-2\left(x^2-7x-8\right)\)

\(=\left(x-2\right)\left(x^2-7x-8\right)=\left(x-2\right)\left(x^2+x-8x-8\right)\)

\(=\left(x-2\right)\left[x\left(x+1\right)-8\left(x+1\right)\right]=\left(x-2\right)\left(x+1\right)\left(x-8\right)\)

c.

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+10+2\right)-24\)

\(=\left(x^2+7x+10\right)^2+2\left(x^2+7x+10\right)-24\)

\(=\left(x^2+7x+10\right)^2-4\left(x^2+7x+10\right)+6\left(x^2+7x+10\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+10-4\right)+6\left(x^2+7x+10-4\right)\)

\(=\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)