K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2019

a, x(a - b) + (a - b)

= (x + 1)(a - b)

b, x(a + b) - a - b

= x(a + b) - (a + b)

= (x - 1)(a + b)

c, 10ax - 5ay - 2x + y

=  5a(2x - y) - (2x - y)

= (5a - 1)(2x - y)

d, 2a^2x - 5by - 5a^2y + 2bx

= 2x(a^2 + b) - 5y(b + a^2)

= (2a - 5y)(a^2 + b)

làm tiếp:

2ax2 - bx2 - 2ax +bx +4a-2b

= x2(2a-b) - x(2a-b) +2(2a-b)

=(2a-b)(x2-x+2)

\(a.\: 2a^2b\left(x+y\right)-4a^3b\left(-x-y\right)\\ =\left(x+y\right)\left(2a^2b+4a^3b\right)\\ =2a^2b\left(x+y\right)\left(1+2a\right)\)

\(b.\:-3a\left(x-y\right)-a^2\left(7-x\right)\\ =a\left(3y-3x-7a+ax\right)\)

6 tháng 8 2017

๖ۣۜĐặng♥๖ۣۜQuý bạn giúp mình thêm mấy câu kia đi

6 tháng 12 2016

B=\(\frac{5\left(x-y\right)-3\left(x-y\right)}{10\left(x-y\right)}\)

B=\(\frac{\left(x-y\right)\left(5-3\right)}{10\left(x-y\right)}\)

B= \(\frac{\left(x-y\right)2}{10\left(x-y\right)}\)

B= 5

vậy B=5

AH
Akai Haruma
Giáo viên
16 tháng 9 2020

Lời giải:

a)

$5(2-x)^2+xy-2y=5(x-2)^2+y(x-2)=(x-2)[5(x-2)+y]=(x-2)(5x+y-10)$

b)

$3a^2x-3a^2y+abx-aby=3a^2(x-y)+ab(x-y)$

$=(x-y)(3a^2+ab)=a(x-y)(3a+b)$

c)

$x(x-y)^3-y(y-x)^2-y^2(x-y)=x(x-y)^3-y(x-y)^2-y^2(x-y)$

$=(x-y)[x(x-y)^2-y(x-y)-y^2]$

$=(x-y)(x^3-2x^2y+xy^2-xy)$

$=x(x-y)(x^2-2xy+y^2-y)$

d)

$2ax^3+6ax^2+6ax+18a$

$=2a(x^3+3x^2+3x+9)

$=2a[x^2(x+3)+3(x+3)]$

$=2a(x+3)(x^2+3)$

e) f) Biểu thức không phân tích được thành nhân tử. Bạn xem lại đề.

29 tháng 11 2016

1, b) \(\frac{x^2+y^2-4+2xy}{x^2-y^2+4+4x}\) = \(\frac{\left(x^2+2xy+y^2\right)-4}{\left(x^2+4x+4\right)-y^2}\) =\(\frac{\left(x+y\right)^2-2^2}{\left(x+2\right)^2-y^2}\)= \(\frac{\left(x+y+2\right)\left(x+y-2\right)}{\left(x+2+y\right)\left(x+2-y\right)}\) = \(\frac{x+y-2}{x+2-y}\)

2, A= \(\frac{a^2+ax+ab+bx}{a^2+ax-ab-bx}\) = \(\frac{\left(a^2+ax\right)+\left(ab+bx\right)}{\left(a^2+ax\right)-\left(ab+bx\right)}\) = \(\frac{a\left(a+x\right)+b\left(a+x\right)}{a\left(a+x\right)-b\left(a+x\right)}\)= \(\frac{\left(a+x\right)\left(a+b\right)}{\left(a+x\right)\left(a-b\right)}\)= \(\frac{a+b}{a-b}\)

30 tháng 11 2016

THANKS BN

6 tháng 9 2020

a) \(\left(x+y\right)^3-x^3-y^3\)

\(=\left(x+y\right)^3-\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-x^2+xy-y^2\right]\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)\)

\(=3xy\left(x+y\right)\)

b) \(x^2+y^2+2xy+yz+xz\)

\(=\left(x^2+2xy+y^2\right)+\left(yz+xz\right)\)

\(=\left(x+y\right)^2+z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y+z\right)\)

c) \(x^2-10xy-1+25y^2\)

\(=\left(x^2-10xy+25y^2\right)-1\)

\(=\left(x-5y\right)^2-1\)

\(=\left(x-5y-1\right)\left(x-5y+1\right)\)

d) \(ax^2-ax+bx^2-bx+a+b\)

\(=(ax^2+bx^2)-(ax+bx)+(a+b)\)

\(=x^2(a+b)-x(a+b)+(a+b)\)

\(=(a+b)(x^2-x+1)\)

e)\(x^2-2y+3xz+x-2y+3z\)

\(=(x^2+x)-(2xy+2y)+(3xz+3z)\)

\(=x(x+1)-2y(x-1)+3z(x+1)\)

\(=(x+1)(x-2y+3z)\)

f) \(xyz-xy-yz-xz+x+y+z-1\)

\(=(xyz-xy)-(yz-y)-(xz-x)+(z-1)\)

\(=xy(z-1)-y(z-1)-x(z-1)+(z-1)\)

\(=(z-1)(xy-y-x+1)\)

\(=(z-1)[y(x-1)-(x-1)]\)

\(=(z-1)(x-1)(y-1)\)

_Học tốt_

20 tháng 10 2020

Câu 1) xem lại đề giùm đi em.