\(x^3\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

1)

$x^3+9x^2+23x+15=(x^3+x^2)+(8x^2+8x)+(15x+15)$

$=x^2(x+1)+8x(x+1)+15(x+1)$

$=(x+1)(x^2+8x+15)$

$=(x+1)[(x^2+3x)+(5x+15)]$

$=(x+1)[x(x+3)+5(x+3)]=(x+1)(x+3)(x+5)$

5)

$x^4+5x^2+9=(x^4+6x^2+9)-x^2$

$=(x^2+3)^2-x^2=(x^2+3-x)(x^2+3+x)$

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

3)

$(3x-2)^2(6x-5)(6x-3)-5$

$=(9x^2-12x+4)(36x^2-48x+15)-5$

$=(9x^2-12x+4)[4(9x^2-12x)+15]-5$

$=(a+4)(4a+15)-5$ (đặt $9x^2-12x=a$)

$=4a^2+31a+55$

$=4a^2+20a+11a+55$

$=4a(a+5)+11(a+5)=(4a+11)(a+5)=(36x^2-48x+11)(9x^2-12x+5)$

$=

2 tháng 8 2018

Bài 1. Giải các phương trình sau
a) \(5\left(x-2\right)=3\left(x+1\right)\)
\(\Leftrightarrow5x-10=3x+3\)
\(\Leftrightarrow5x-3x=10+3\)
\(\Leftrightarrow2x=13\)
\(\Leftrightarrow x=\dfrac{13}{2}\)
Vậy \(S=\left\{\dfrac{13}{2}\right\}\)
b) \(\dfrac{2x}{x+1}+\dfrac{3}{x-2}=2\left(1\right)\)
Điều kiện: \(x+1\ne0\Leftrightarrow x\ne-1\)\(x-2\ne0\Leftrightarrow x\ne2\)
\(\left(1\right)\Leftrightarrow\dfrac{2x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\dfrac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{2\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow2x\left(x-2\right)+3\left(x+1\right)=2\left(x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2x^2-4x+3x+3=2x^2-4x+2x-4\)
\(\Leftrightarrow2x^2-4x+3x-2x^2+4x-2x=-3-4\)
\(\Leftrightarrow x=-7\left(N\right)\)
Vậy \(S=\left\{-7\right\}\)
c) \(|2x+7|=3\)
\(\Leftrightarrow2x+7=3\) hoặc \(2x+7=-3\)
.. \(2x+7=3\Leftrightarrow2x=-4\Leftrightarrow x=-2\)
.. \(2x+7=-3\Leftrightarrow2x=-10\Leftrightarrow x=-5\)
Vậy \(S=\left\{-2;-5\right\}\)

Bài 2 bạn ghi rõ đề lại nha r mik giải lun cho

3 tháng 8 2018

Bài 2. Giải các bất phương trình sau:
a) \(\left(x+2\right)^2< \left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow x^2+4x+4< x^2-1\)
\(\Leftrightarrow x^2+4x-x^2< -4-1\)
\(\Leftrightarrow4x< -5\)
\(\Leftrightarrow x>-\dfrac{5}{4}\)
Vậy \(S=\left\{x/x< -\dfrac{5}{4}\right\}\)
Câu b mik tính ko ra nhá sorry!!!!!!!!!!

27 tháng 9 2017

\(x^3-2x^2-x+2\)

\(=x^2\left(x-2\right)-\left(x-2\right)\)

\(=\left(x^2-1\right)\left(x-2\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x-2\right)\)

\(x^2+6x-y^2+9\)

\(=\left(x^2+6x+9\right)-y^2\)

\(=\left(x+3\right)^2-y^2\)

\(=\left(x+3-y\right)\left(x+3+y\right)\)

27 tháng 9 2017

đề bài kiểu gì vậy

28 tháng 8 2016

Nhận xét thấy : \(x^4+y^4+z^4+t^4\ge2x^2y^2+2z^2t^2\ge4xyzt\)

Dấu " =" xảy ra khi \(x=y=z=t\)

Áp dụng :

\(a^4+a^4+b^4+c^4\ge4a^2bc\)

\(a^4+b^4+b^4+c^4\ge4ab^2c\)

\(a^4+b^4+c^4+c^4\ge4abc^2\)

\(\Rightarrow4\left(a^4+b^4+c^4\right)\ge4abc\left(a+b+c\right)\)

\(\Leftrightarrowđpcm\)

Dấu "  = " xảy ra khi \(a=b=c\)

a: \(3x^2+y^2+10x-2xy+26=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(2x^2+10x+\dfrac{5}{2}\right)+\dfrac{47}{2}=0\)

\(\Leftrightarrow\left(x-y\right)^2+2\cdot\left(x+\dfrac{5}{2}\right)^2+\dfrac{47}{2}=0\)(vô lý)

b: \(\Leftrightarrow3x^2-12x+12+6y^2-20y+\dfrac{50}{3}+\dfrac{34}{3}=0\)

\(\Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{5}{3}\right)^2+\dfrac{34}{3}=0\)(vô lý)